[en] A new global ocean temperature and salinity climatology is proposed for two time periods: a long time mean using multiple sensor data for the 1900–2017 period and a shorter time mean using only profiling float data for the 2003–2017 period. We use the historical database of World Ocean Database 2018. The estimation approach is novel as an additional quality control procedure is implemented, along with a new mapping algorithm based on Data Interpolating Variational Analysis. The new procedure, in addition to the traditional quality control approach, resulted in low sensitivity in terms of the first guess field choice. The roughness index and the root mean square of residuals are new indices applied to the selection of the free mapping parameters along with sensitivity experiments. Overall, the new estimates were consistent with previous climatologies, but several differences were found. The cause of these discrepancies is difficult to identify due to several differences in the procedures. To minimise these uncertainties, a multi-model ensemble mean is proposed as the least uncertain estimate of the global ocean temperature and salinity climatology.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Shahzadi, Kanwal
Pinardi, Nadia
Barth, Alexander ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Troupin, Charles ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Barker P. M., Dunn J. R., Domingues C. M., Wijffels S. E., (2011). Pressure Sensor Drifts in Argo and Their Impacts. J. Atmos. Oceanic Technology 28, 1036–1049. 10.1175/2011jtecho831.1
Barnes S. L., (1964). A Technique for Maximizing Details in Numerical Weather Map Analysis. J. Appl. Meteorol. 3, 396–409. 10.1175/1520-0450(1964)003<0396:atfmdi>2.0.co;2
Barth A., Beckers J.-M., Troupin C., Alvera-Azcárate A., Vandenbulcke L., (2014). divand-1.0: N-Dimensional Variational Data Analysis for Ocean Observations. Geosci. Model. Dev. 7, 225–241. 10.5194/gmd-7-225-2014
Brasseur P. P., (1991). A Variational Inverse Method for the Reconstruction of General Circulation fields in the Northern Bering Sea. J. Geophys. Res. 96, 4891–4907. 10.1029/90jc02387
Bretherton F. P., Davis R. E., Fandry C. B., (1976). A Technique for Objective Analysis and Design of Oceanographic Experiments Applied to Mode-73. Deep Sea Research and Oceanographic Abstracts, 23. Elsevier, 559–582. 10.1016/0011-7471(76)90001-2
Chen L., Huang J. G., Ma Q., Hänninen H., Tremblay F., Bergeron Y., (2019). Long‐term Changes in the Impacts of Global Warming on Leaf Phenology of Four Temperate Tree Species. Glob. Change Biol. 25, 997–1004. 10.1111/gcb.14496
Cowley R., Killick R., Boyer T., Gouretski V., Reseghetti F., Kizu S., et al. (2021). International Quality-Controlled Ocean Database (Iquod) V0. 1: the Temperature Uncertainty Specification. Front. Mar. Sci. 8, 607. 10.3389/fmars.2021.689695
Daley R., (1993). Atmospheric Data Analysis, 2. Cambridge University Press.
Frankcombe L. M., England M. H., Kajtar J. B., Mann M. E., Steinman B. A., (2018). On the Choice of Ensemble Mean for Estimating the Forced Signal in the Presence of Internal Variability. J. Clim. 31, 5681–5693. 10.1175/jcli-d-17-0662.1
Gandin L., (1960). On Optimal Interpolation and Extrapolation of Meteorological fields. Trudy GGO 114, 75–89.
Garcia H., Boyer T., Locarnini R., Baranova O., Zweng M., (2018). World Ocean Database 2018: Users Manual (Prerelease). NOAA Atlas NESDIS81.
Gouretski V., (2019). A New Global Ocean Hydrographic Climatology. Atmos. Oceanic Sci. Lett. 12, 226–229. 10.1080/16742834.2019.1588066
Gouretski V., (2018). World Ocean Circulation Experiment - Argo Global Hydrographic Climatology. Ocean Sci. 14, 1127–1146. 10.5194/os-14-1127-2018
IOC and IHO (2003). Bodc: Centenary Edition of the Gebco Digital Atlas, Published on Cd-Rom on Behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as Part of the General Bathymetric Chart of the Oceans. Liverpool, UK: British Oceanographic Data Centre.
Janjić T., Bormann N., Bocquet M., Carton J., Cohn S., Dance S., et al. (2018). On the Representation Error in Data Assimilation. Quart. J. R. Meteorol. Soc., 144. 10.1002/qj.3130
Jia W., Wang D., Pinardi N., Simoncelli S., Storto A., Masina S., (2016). A Quality Control Procedure for Climatological Studies Using Argo Data in the north pacific Western Boundary Current Region. J. Atmos. Oceanic Technology 33, 2717–2733. 10.1175/jtech-d-15-0140.1
Krishnamurti T. N., Kishtawal C. M., LaRow T. E., Bachiochi D. R., Zhang Z., Williford C. E., et al. (1999). Improved Weather and Seasonal Climate Forecasts from Multimodel Superensemble. Science 285, 1548–1550. 10.1126/science.285.5433.1548
Levitus S., (1982). Climatological Atlas of the World Ocean, NOAA Professional Paper No. 13. US Department of Commerce.
Liu C., Liang X., Chambers D. P., Ponte R. M., (2020). Global Patterns of Spatial and Temporal Variability in Salinity from Multiple Gridded Argo Products. J. Clim. 33, 8751–8766. 10.1175/jcli-d-20-0053.1
Locarnini M., Mishonov A., Baranova O., Boyer T., Zweng M., Garcia H., et al. (2019). Temperature, World Ocean Atlas 2018. NOAA Atlas NESDIS81. Available online at https://accession.nodc.noaa.gov/NCEI-WOA18
Lozier M. S., McCartney M. S., Owens W. B., (1994). Anomalous Anomalies in Averaged Hydrographic Data. J. Phys. Oceanogr. 24, 2624–2638. 10.1175/1520-0485(1994)024<2624:aaiahd>2.0.co;2
Nittis K., Pinardi N., Lascaratos A., (1993). Characteristics of the Summer 1987 Flow Field in the Ionian Sea. J. Geophys. Res. 98, 10171–10184. 10.1029/93jc00451
Owens W. B., Wong A. P. S., (2009). An Improved Calibration Method for the Drift of the Conductivity Sensor on Autonomous CTD Profiling Floats by θ-S Climatology. Deep Sea Res. Oceanographic Res. Pap. 56, 450–457. 10.1016/j.dsr.2008.09.008
Solomon S., Manning M., Marquis M., Qin D., (2007). Climate Change 2007-the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC (Vol. 4). Cambridge University Press.
Shahzadi K., Pinardi N., Lyubartsev V., (2021). A Non-linear Quality Control Procedure for Representativeness Errors in Ocean Historical Datasets. Bollettino di Geofisica 12, 99.
Shahzadi K., Pinardi N., Lyubartsev V., Zavatarelli M., Simoncelli S., (2020). SeaDataCloud Temperature and Salinity Climatologies for the Global Ocean V2). ITALY. Report (scientific report). 10.13155/77512
Simoncelli S., Coatanoan C., Myroshnychenko V., Bäck Ö., Sagen H., Scory S., et al. (2021). Seadatacloud Data Products for the European Marginal Seas and the Global Ocean. Available online at: http://hdl.handle.net/2268/259074.
Troupin C., Barth A., Sirjacobs D., Ouberdous M., Brankart J.-M., Brasseur P., et al. (2012). Generation of Analysis and Consistent Error fields Using the Data Interpolating Variational Analysis (Diva). Ocean Model. 52-53, 90–101. 10.1016/j.ocemod.2012.05.002
Wong A. P. S., Johnson G. C., Owens W. B., (2003). Delayed-Mode Calibration of Autonomous CTD Profiling Float Salinity Data Byθ-SClimatology*. J. Atmos. Oceanic Technol. 20, 308–318. 10.1175/1520-0426(2003)020<0308:dmcoac>2.0.co;2
Zweng M., Seidov D., Boyer T., Locarnini M., Garcia H., Mishonov A., et al. (2019). Salinity, World Ocean Atlas 2018. NOAA Atlas NESDIS81. Available online at: https://accession.nodc.noaa.gov/NCEI-WOA18
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.