[en] Coronavirus disease 2019 (COVID-19) is an acute infectious disease caused by the novel
coronavirus (SARS-CoV-2) identified in 2019. The COVID-19 outbreak continues to have devastat-
ing consequences for human lives and the global economy. The B-LiFe mobile laboratory in Pied-
mont, Italy, was deployed for the surveillance of COVID-19 cases by large-scale testing of first re-
sponders. The objective was to assess the seroconversion among the regional civil protection (CP),
police, health care professionals, and volunteers. The secondary objective was to detect asympto-
matic individuals within this cohort in the light of age, sex, and residence. In this paper, we report
the results of serological testing performed by the B-LiFe mobile laboratory deployed from June 10
to July 23, 2020. The tests included whole blood finger-prick and serum sampling for detection of
SARS-CoV-2 spike receptor-binding domain (S-RBD) antibodies. The prevalence of SARS-CoV-2
antibodies was approximately 5% (294/6013). The results of the finger-prick tests and serum sample
analyses showed moderate agreement (kappa = 0.77). Furthermore, the detection rates of serum
antibodies to the SARS-CoV-2 nucleocapsid protein (NP) and S-RBD among the seroconverted in-
dividuals were positively correlated (kappa = 0.60), at least at the IgG level. Seroprevalence studies
based on serological testing for the S-RBD protein or SARS-CoV-2 NP antibodies are not sufficient
for diagnosis but might help in screening the population to be vaccinated and in determining the
duration of seroconversion.
Disciplines :
Immunology & infectious disease
Author, co-author :
Nyabi, Omar; Université Catholique de Louvain - UCL > Institut de Recherche Expérimentale et Clinique (IREC), > Center for Applied Molecular Technologies (CTMA)
Bentahir, Mostafa; Université Catholique de Louvain - UCL > Institut de Recherche Expérimentale et Clinique (IREC), > Center for Applied Molecular Technologies (CTMA)
Ambroise, Jérôme; Université Catholique de Louvain - UCL > Institut de Recherche Expérimentale et Clinique (IREC) > Center for Applied Molecular Technologies (CTMA)
Bearzatto, Bertrand; Université Catholique de Louvain - UCL > Institut de Recherche Expérimentale et Clinique (IREC) > Center for Applied Molecular Technologies (CTMA)
Chibani, Nawfal; Université Catholique de Louvain - UCL > Institut de Recherche Expérimentale et Clinique (IREC) > Center for Applied Molecular Technologies (CTMA)
Smits, Benjamin; Université Catholique de Louvain - UCL > Institut de Recherche Expérimentale et Clinique (IREC) > Center for Applied Molecular Technologies (CTMA)
Durant, Jean François; Université Catholique de Louvain - UCL > Institut de Recherche Expérimentale et Clinique (IREC) > Center for Applied Molecular Technologies (CTMA)
Vybornov, Aleksandr; Université Catholique de Louvain - UCL > Institut de Recherche Expérimentale et Clinique (IREC) > Center for Applied Molecular Technologies (CTMA)
Thellin, Olivier ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Histologie
Elmoualij, Benaïssa ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Histologie
Gala, Jean-Luc; Université Catholique de Louvain - UCL > Institut de Recherche Expérimentale et Clinique (IREC) > Center for Applied Molecular Technologies (CTMA)
Language :
English
Title :
Diagnostic Value of IgM and IgG Detection in COVID-19 Diagnosis by the Mobile Laboratory B-LiFE: A Massive Testing Strategy in the Piedmont Region
Publication date :
24 March 2021
Journal title :
International Journal of Environmental Research and Public Health
ISSN :
1660-4601
eISSN :
1661-7827
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Basel, Switzerland
Gautam, A.; Kaphle, K.; Shrestha, B.; Phuyal, S. Susceptibility to SARS, MERS, and COVID-19 from animal health perspective. Open Vet. J. 2020, 10, 164–177.
Quirch, M.; Lee, J.; Rehman, S. Hazards of the cytokine storm and cytokine-targeted therapy in patients with COVID-19: Review. J Med. Internet Res. 2020, 22, e20193, doi:10.2196/20193.
de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016, 14, 523–534, doi:10.1038/nrmicro.2016.81.
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506, doi:10.1016/S0140-6736(20)30183-5.
Joyner, M.J.; Carter, R.E.; Senefeld, J.W.; Klassen, S.A.; Mills, J.R.; Johnson, P.W.; Theel, E.S.; Wiggins, C.C.; Bruno, K.A.; Klompas, A.M.; et al. Convalescent Plasma Antibody Levels and the Risk of Death from Covid-19. N. Engl. J. Med. 2021, 384, 1015–1027, doi:10.1056/NEJMoa2031893, doi:10.1056/NEJMoa2031893.
Deb, P.; Molla, M.M.A.; Rahman, K.M.S. An update to monoclonal antibody as therapeutic option against COVID-19. Biosaf. Health 2021, 10.1016/j.bsheal.2021.02.001, doi:10.1016/j.bsheal.2021.02.001.
Petersen, E.; Koopmans, M.; Go, U.; Hamer, D.H.; Petrosillo, N.; Castelli, F.; Storgaard, M.; Al Khalili, S.; Simonsen, L. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect. Dis. 2020, 20, e238–e244, doi:10.1016/S14733099(20)30484-9.
He, N.; Lu, Y.H.; Li, L.M.; Shen, H.B.; Yang, W.Z.; Feng, Z.J. Collaboration group for the emergency research project of novel coronavirus pneumonia for national natural science foundation of, C. [Epidemiological study design of asymptomatic infection of the 2019 novel coronavirus]. Zhonghua Liu Xing Bing Xue Za Zhi 2020, 41, E078, doi:10.3760/cma.j.cn112338-20200723-00975.
Kumar, M.S.; Bhatnagar, T.; Manickam, P.; Kumar, V.S.; Rade, K.; Shah, N.; Kant, S.; Babu, G.R.; Zodpey, S.; Girish Kumar, C.P.; et al. National sero-surveillance to monitor the trend of SARS-CoV-2 infection transmission in India: Protocol for communitybased surveillance. Indian J. Med. Res. 2020, 151, 419–423, doi:10.4103/ijmr.IJMR_1818_20.
Amanat, F.; Stadlbauer, D.; Strohmeier, S.; Nguyen, T.H.O.; Chromikova, V.; McMahon, M.; Jiang, K.; Asthagiri Arunkumar, G.; Jurczyszak, D.; Polanco, J.; et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. medRxiv 2020, 26, 1033–1036, doi:10.1101/2020.03.17.20037713, doi:10.1101/2020.03.17.20037713.
Ul-Rahman, A.; Shabbir, M.A.B.; Aziz, M.W.; Yaqub, S.; Mehmood, A.; Raza, M.A.; Shabbir, M.Z. A comparative phylogenomic analysis of SARS-CoV-2 strains reported from non-human mammalian species and environmental samples. Mol. Biol. Rep. 2020, 47, 9207–9217, doi:10.1007/s11033-020-05879-5, doi:10.1007/s11033-020-05879-5.
Huo, J.; Le Bas, A.; Ruza, R.R.; Duyvesteyn, H.M.E.; Mikolajek, H.; Malinauskas, T.; Tan, T.K.; Rijal, P.; Dumoux, M.; Ward, P.N.; et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat. Struct. Mol. Biol. 2020, 27, 846–854, doi:10.1038/s41594-020-0469-6.
Tilocca, B.; Soggiu, A.; Sanguinetti, M.; Musella, V.; Britti, D.; Bonizzi, L.; Urbani, A.; Roncada, P. Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses. Microbes. Infect. 2020, 22, 188– 194, doi:10.1016/j.micinf.2020.04.002.
Deshpande, G.R.; Sapkal, G.N.; Tilekar, B.N.; Yadav, P.D.; Gurav, Y.; Gaikwad, S.; Kaushal, H.; Deshpande, K.S.; Kaduskar, O.; Sarkale, P.; et al. Neutralizing antibody responses to SARS-CoV-2 in COVID-19 patients. Indian J. Med. Res. 2020, 152, 82–87, doi:10.4103/ijmr.IJMR_2382_20.
Anna, F.; Goyard, S.; Lalanne, A.I.; Nevo, F.; Gransagne, M.; Souque, P.; Louis, D.; Gillon, V.; Turbiez, I.; Bidard, F.C.; et al. High seroprevalence but short-lived immune response to SARS-CoV-2 infection in Paris. Eur. J Immunol. 2021, 51, 180–190, doi:10.1002/eji.202049058.
Bwire, G.M.; Majigo, M.V.; Njiro, B.J.; Mawazo, A. Detection profile of SARS-CoV-2 using RT-PCR in different types of clinical specimens: A systematic review and meta-analysis. J. Med. Virol. 2021, 93, 719–725, doi:10.1002/jmv.26349, doi:10.1002/jmv.26349.
Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020, 10.1001/jama.2020.3786, doi:10.1001/jama.2020.3786.
Montesinos, I.; Gruson, D.; Kabamba, B.; Dahma, H.; Van den Wijngaert, S.; Reza, S.; Carbone, V.; Vandenberg, O.; Gulbis, B.; Wolff, F.; et al. Evaluation of two automated and three rapid lateral flow immunoassays for the detection of anti-SARS-CoV-2 antibodies. J. Clin. Virol. 2020, 128, 104413, doi:10.1016/j.jcv.2020.104413.
Corman, V.M.; Drosten, C. Authors' response: SARS-CoV-2 detection by real-time RT-PCR. Euro. Surveill. 2020, 25, 2001035, doi:10.2807/1560-7917.ES.2020.25.21.2001035.
Cassaniti, I.; Percivalle, E.; Sarasini, A.; Cambie, G.; Batisti Biffignandi, G.; Cereda, D.; Baldanti, F. Authors' response: COVID 19: How accurate are seroprevalence studies? Euro. Surveill. 2020, 25, 2001437, doi:10.2807/1560-7917.ES.2020.25.30.2001437.
Cassaniti, I.; Novazzi, F.; Giardina, F.; Salinaro, F.; Sachs, M.; Perlini, S.; Bruno, R.; Mojoli, F.; Baldanti, F.; Members of the San Matteo Pavia, C.-T.F. Performance of VivaDiag COVID-19 IgM/IgG Rapid Test is inadequate for diagnosis of COVID-19 in acute patients referring to emergency room department. J. Med. Virol. 2020, 92, 1724–1727, doi:10.1002/jmv.25800.
Prazuck, T.; Colin, M.; Giache, S.; Gubavu, C.; Seve, A.; Rzepecki, V.; Chevereau-Choquet, M.; Kiani, C.; Rodot, V.; Lionnet, E.; et al. Evaluation of performance of two SARS-CoV-2 Rapid IgM-IgG combined antibody tests on capillary whole blood samples from the fingertip. PLoS ONE 2020, 15, e0237694, doi:10.1371/journal.pone.0237694.
Tomasik, P.; Krotki, F.; Jonca, M.; Anyszek, T. Rapid point-of-care antibody cassette tests for severe acute respiratory syndrome coronavirus 2: Practical considerations. Pol. Arch. Intern. Med. 2020, 130, 459–462, doi:10.20452/pamw.15311.
Glasgow, A.; Glasgow, J.; Limonta, D.; Solomon, P.; Lui, I.; Zhang, Y.; Nix, M.A.; Rettko, N.J.; Zha, S.; Yamin, R.; et al. Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 45, 28046–28055. doi:10.1073/pnas.2016093117.
Datta, P.K.; Liu, F.; Fischer, T.; Rappaport, J.; Qin, X. SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics 2020, 10, 7448–7464, doi:10.7150/thno.48076.
Ding, S.; Laumaea, A.; Gasser, R.; Medjahed, H.; Pancera, M.; Stamatatos, L.; McGuire, A.; Bazin, R.; Finzi, A. Antibody binding to SARS-CoV-2 S glycoprotein correlates with, but does not predict neutralization. bioRxiv 2020, doi:10.1101/2020.09.08.287482, doi:10.1101/2020.09.08.287482.
Yang, R.; Lan, J.; Huang, B.; A, R.; Lu, M.; Wang, W.; Wang, W.; Li, W.; Deng, Y.; Wong, G.; et al. Lack of antibody-mediated cross-protection between SARS-CoV-2 and SARS-CoV infections. EBioMedicine 2020, 58, 102890, doi:10.1016/j.ebiom.2020.102890.
Tan, C.W.; Chia, W.N.; Qin, X.; Liu, P.; Chen, M.I.; Tiu, C.; Hu, Z.; Chen, V.C.; Young, B.E.; Sia, W.R.; et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat. Biotechnol. 2020, 38, 1073–1078, doi:10.1038/s41587-020-0631-z.
Liu, L.; Wang, P.; Nair, M.S.; Yu, J.; Rapp, M.; Wang, Q.; Luo, Y.; Chan, J.F.; Sahi, V.; Figueroa, A.; et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 2020, 584, 450–456, doi:10.1038/s41586-020-2571-7.
Zost, S.J.; Gilchuk, P.; Case, J.B.; Binshtein, E.; Chen, R.E.; Nkolola, J.P.; Schafer, A.; Reidy, J.X.; Trivette, A.; Nargi, R.S.; et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 2020, 584, 443–449, doi:10.1038/s41586-0202548-6.
McAndrews, K.M.; Dowlatshahi, D.P.; Dai, J.; Becker, L.M.; Hensel, J.; Snowden, L.M.; Leveille, J.M.; Brunner, M.R.; Holden, K.W.; Hopkins, N.S.; et al. Heterogeneous antibodies against SARS-CoV-2 spike receptor binding domain and nucleocapsid with implications for COVID-19 immunity. JCI Insight 2020, 5, e142386, doi:10.1172/jci.insight.142386.
Du, S.; Cao, Y.; Zhu, Q.; Yu, P.; Qi, F.; Wang, G.; Du, X.; Bao, L.; Deng, W.; Zhu, H.; et al. Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy. Cell 2020, 183, 1013–1023.e13, doi:10.1016/j.cell.2020.09.035, doi:10.1016/j.cell.2020.09.035.
Callow, K.A.; Parry, H.F.; Sergeant, M.; Tyrrell, D.A. The time course of the immune response to experimental coronavirus infection of man. Epidemiol. Infect. 1990, 105, 435–446, doi:10.1017/s0950268800048019.
Reed, S.E. The behaviour of recent isolates of human respiratory coronavirus in vitro and in volunteers: Evidence of heterogeneity among 229E-related strains. J. Med. Virol. 1984, 13, 179–192, doi:10.1002/jmv.1890130208.
Sharp, T.M.; Fischer, M.; Munoz-Jordan, J.L.; Paz-Bailey, G.; Staples, J.E.; Gregory, C.J.; Waterman, S.H. Dengue and Zika Virus Diagnostic Testing for Patients with a Clinically Compatible Illness and Risk for Infection with Both Viruses. MMWR Recomm. Rep. 2019, 68, 1–10, doi:10.15585/mmwr.rr6801a1.