Effects of biochar application on crop productivity, soil carbon sequestration, and global warming potential controlled by biochar C:N ratio and soil pH: A global meta-analysis
Xu, Hu ; Université de Liège - ULiège > TERRA Research Centre
Cai, Andong
Wu, Dong
Liang, Guopeng
Xiao, Jung
Xu, Minggang
Colinet, Gilles ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes
Zhang, Wenju
Language :
English
Title :
Effects of biochar application on crop productivity, soil carbon sequestration, and global warming potential controlled by biochar C:N ratio and soil pH: A global meta-analysis
Agegnehu, G., Bass, A.M., Nelson, P.N., Bird, M.I., Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 543 (2016), 295–306.
Al-Wabel, M.I., Hussain, Q., Usman, A.R.A., Ahmad, M., Abduljabbar, A., Sallam, A.S., Ok, Y.S., Impact of biochar properties on soil conditions and agricultural sustainability: a review. Land Degrad. Dev. 29 (2018), 2124–2161.
Biederman, L.A., Harpole, W.S., Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. Gcb Bioenergy 5 (2013), 202–214.
Borchard, N., Schirrmann, M., Cayuela, M.L., Kammann, C., Wrage-Mönnig, N., Estavillo, J.M., Fuertes-Mendizábal, T., Sigua, G., Spokas, K., Ippolito, J.A., Novak, J., Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Sci. Total Environ. 651 (2019), 2354–2364.
Cai, A., Feng, W., Zhang, W., Xu, M., Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China. J. Environ. Manage. 172 (2016), 2–9.
Cai, A., Xu, M., Wang, B., Zhang, W., Liang, G., Hou, E., Luo, Y., Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 189 (2019), 168–175.
Cai, A., Chang, N., Zhang, W., Liang, G., Zhang, X., Hou, E., Jiang, L., Chen, X., Xu, M., Luo, Y., The spatial patterns of litter turnover time in Chinese terrestrial ecosystems. Eur. J. Soil Sci. 1 (2020), 1–12.
Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca, M., Mu, M., Saatchi, S., Santoro, M., Thurner, M., Weber, U., Ahrens, B., Beer, C., Cescatti, A., Randerson, J.T., Reichstein, M., Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514 (2014), 213–217.
Cayuela, M.L., Oenema, O., Kuikman, P.J., Bakker, R.R., Groenigen, J.W.V., Bioenergy by-products as soil amendments? Implications for carbon sequestration and greenhouse gas emissions. Glob. Change Biol. Bioenergy 2 (2010), 201–213.
Cayuela, M.L., van Zwieten, L., Singh, B.P., Jeffery, S., Roig, A., Sánchez-Monedero, M.A., Biochar's role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric. Ecosyst. Environ. 191 (2014), 5–16.
Chan, K.Y., Xu, Z., Biochar: Nutrient Properties and Their Enhancement, Biochar for Environmental Management: Science and Technology. 2012, Taylor and Francis, 67–84.
Chew, J., Zhu, L., Nielsen, S., Graber, E., Mitchell, D.R.G., Horvat, J., Mohammed, M., Liu, M., van Zwieten, L., Donne, S., Munroe, P., Taherymoosavi, S., Pace, B., Rawal, A., Hook, J., Marjo, C., Thomas, D.S., Pan, G., Li, L., Bian, R., McBeath, A., Bird, M., Thomas, T., Husson, O., Solaiman, Z., Joseph, S., Fan, X., Biochar-based fertilizer: supercharging root membrane potential and biomass yield of rice. Sci. Total Environ., 713, 2020, 136431.
Chintala, R., Mollinedo, J., Schumacher, T.E., Malo, D.D., Julson, J.L., Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 60 (2013), 393–404.
Cleveland, C.C., Liptzin, D., C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?. Biogeochemistry 85 (2007), 235–252.
Clough, T., Condron, L., Kammann, C., Müller, C., A review of biochar and soil nitrogen dynamics. Agronomy 3 (2013), 275–293.
Crane-Droesch, A., Abiven, S., Jeffery, S., Torn, M.S., Heterogeneous global crop yield response to biochar: a meta-regression analysis. Environ. Res. Lett., 8, 2013, 044049.
De Martonne, E., Une nouvelle fonction climatologique: l'indice d'aridité. La Météorologie 2 (1926), 449–458.
DeLuca, T., MacKenzie, M., Gundale, M., Biochar effects on soil nutrient transformations. Biochar for Environmental Management: Science and Technology, 2009, Earthscan, London, UK, 251–270, 10.4324/9781849770552.
Elith, J., Leathwick, J.R., Hastie, T., A working guide to boosted regression trees. J. Anim. Ecol. 77 (2008), 802–813.
Foereid, B., Lehmann, J., Major, J., Modeling black carbon degradation and movement in soil. Plant Soil 345 (2011), 223–236.
Guo, M., Xin, L.I., Meta-analysis:a new quantitative research approach in eco-environmental sciences. J. Desert Res. 29 (2009), 911–919.
Haider, G., Steffens, D., Moser, G., Müller, C., Kammann, C.I., Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 237 (2017), 80–94.
He, Y., Zhou, X., Jiang, L., Li, M., Du, Z., Zhou, G., Shao, J., Wang, X., Xu, Z., Hosseini Bai, S., Wallace, H., Xu, C., Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy 9 (2017), 743–755.
Hedges, L., Gurevitch, J., Curtis, P., The meta-analysis of response ratios in experimental. Ecology 80 (1999), 1150–1156.
Horák, J., Kondrlová, E., Igaz, D., Šimanský, V., Felber, R., Lukac, M., Balashov, E.V., Buchkina, N.P., Rizhiya, E.Y., Jankowski, M., Biochar and biochar with N-fertilizer affect soil N2O emission in Haplic Luvisol. Biologia 72 (2017), 995–1001.
Hou, E., Luo, Y., Kuang, Y., Chen, C., Lu, X., Jiang, L., Luo, X., Wen, D., Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun., 11, 2020, 637.
Hungate, B.A., van Groenigen, K.-J., Six, J., Jastrow, J.D., Luo, Y., de Graaff, M.-A., van Kessel, C., Osenberg, C.W., Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses. Glob. Change Biol. 15 (2009), 2020–2034.
IPCC, Climate change 2014: synthesis report. Core Writing Team, R.K.Pachauri, Meyer, L.A., (eds.) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014, IPCC, Geneva, Switzerland.
Jeffery, S., Verheijen, F.G.A., van der Velde, M., Bastos, A.C., A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 144 (2011), 175–187.
Jeffery, S., Verheijen, F.G.A., Kammann, C., Abalos, D., Biochar effects on methane emissions from soils: a meta-analysis. Soil Biol. Biochem. 101 (2016), 251–258.
Jeffery, S., Abalos, D., Prodana, M., Bastos, A., Groenigen, J., Hungate, B., Verheijen, F., Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 12 (2017), 2–8.
Jones, D.L., Murphy, D.V., Khalid, M., Ahmad, W., Edwards-Jones, G., DeLuca, T.H., Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol. Biochem. 43 (2011), 1723–1731.
Lal, R., Soil carbon sequestration impacts on global climate change and food security. Science 304 (2004), 1623–1627.
Lehmann, J., Gaunt, J., Rondon, M., Biochar sequestration in terrestrial ecosystems-A Review. Mitig. Adapt. Strateg. Glob. Change 11 (2006), 403–427.
Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., Pan, G., Paz-Ferreiro, J., Biochar's effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant Soil 373 (2013), 583–594.
Liu, S., Zhang, Y., Zong, Y., Hu, Z., Wu, S., Zhou, J., Jin, Y., Zou, J., Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. GCB Bioenergy 8 (2016), 392–406.
Liu, Y., Lu, H., Yang, S., Wang, Y., Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons. Field Crop. Res. 191 (2016), 161–167.
Liu, X., Mao, P., Li, L., Ma, J., Impact of biochar application on yield-scaled greenhouse gas intensity: a meta-analysis. Sci. Total Environ. 656 (2019), 969–976.
Luo, Z., Wang, G., Wang, E., Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate. Nat. Commun., 10, 2019, 3688.
Oladele, S.O., Adeyemo, A.J., Awodun, M.A., Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils. Geoderma 336 (2019), 1–11.
Prendergast-Miller, M.T., Duvall, M., Sohi, S.P., Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur. J. Soil Sci. 65 (2014), 173–185.
Schmidt, M.W.I., Skjemstad, J.O., Jäger, C., Carbon isotope geochemistry and nanomorphology of soil black carbon: black chernozemic soils in central Europe originate from ancient biomass burning. Global Biogeochem. Cy, 16, 2002, 1123.
Sheng, Y., Zhu, L., Biochar alters microbial community and carbon sequestration potential across different soil pH. Sci. Total Environ. 622-623 (2018), 1391–1399.
Sial, T.A., Khan, M.N., Lan, Z., Kumbhar, F., Ying, Z., Zhang, J., Sun, D., Li, X., Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties. Process Saf. Environ. 122 (2019), 366–377.
Singh, B.P., Cowie, A.L., Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci. Rep., 4, 2014, 3687.
Smith, P., Soil carbon sequestration and biochar as negative emission technologies. Glob. Chang. Biol. 22 (2016), 1315–1324.
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., Smith, J., Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363 (2008), 789–813.
Sohi, S.P., Krull, E., Lopez-Capel, E., Bol, R., A review of biochar and its use and function in soil. Adv. Agron. 105 (2010), 47–82.
Sugiarto, Y., Sunyoto, N.M.S., Zhu, M., Jones, I., Zhang, D., Effect of biochar addition on microbial community and methane production during anaerobic digestion of food wastes: the role of minerals in biochar. Bioresour. Technol., 323, 2021, 124585.
Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S., Agricultural sustainability and intensive production practices. Nature 418 (2002), 671–677.
Valin, H., Havlík, P., Mosnier, A., Herrero, M., Schmid, E., Obersteiner, M., Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security?. Environ. Res. Lett., 8, 2013, 035019.
Verhoeven, E., Pereira, E., Decock, C., Suddick, E., Angst, T., Six, J., Toward a better assessment of biochar-nitrous oxide mitigation potential at the field scale. J. Environ. Qual. 46 (2017), 237–246.
Wiesmeier, M., Hübner, R., Spörlein, P., Geuß, U., Hangen, E., Reischl, A., Schilling, B., von Lützow, M., Kögel-Knabner, I., Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation. Glob. Change Biol. Bioenergy 20 (2014), 653–665.
Woolf, D., Lehmann, J., Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. Biogeochemistry 111 (2012), 83–95.