[en] Sub-daily precipitation extremes are high-impact events that can result in flash floods, sewer system overload, or landslides. Several studies have reported an intensification of projected short-duration extreme rainfall in a warmer future climate. Traditionally, regional climate models (RCMs) are run at a coarse resolution using deep-convection parameterization for these extreme events. As computational resources are continuously ramping up, these models are run at convection-permitting resolution, thereby partly resolving the small-scale precipitation events explicitly. To date, a comprehensive evaluation of convection-permitting models is still missing. We propose an evaluation strategy for simulated sub-daily rainfall extremes that summarizes the overall RCM performance. More specifically, the following metrics are addressed: the seasonal/diurnal cycle, temperature and humidity dependency, temporal scaling and spatio-temporal clustering. The aim of this paper is: (i) to provide a statistical modeling framework for some of the metrics, based on extreme value analysis, (ii) to apply the evaluation metrics to a micro-ensemble of convection-permitting RCM simulations over Belgium, against high-frequency observations, and (iii) to investigate the added value of convection-permitting scales with respect to coarser 12-km resolution. We find that convection-permitting models improved precipitation extremes on shorter time scales (i.e, hourly or two-hourly), but not on 6h-24h time scales. Some metrics such as the diurnal cycle or the Clausius-Clapeyron rate are improved by convection-permitting models, whereas the seasonal cycle appears robust across spatial scales. On the other hand, the spatial dependence is poorly represented at both convection-permitting scales and coarser scales. Our framework provides perspectives for improving high-resolution atmospheric numerical modeling and datasets for hydrological applications.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Van de Vyver, Hans
Van Schaeybroeck, Bert; Royal Meteorological Institute, Brussels, Belgium
De Troch, Rozemien; Royal Meteorological Institute, Brussels, Belgium
De Cruz, Lesley; Royal Meteorological Institute, Brussels, Belgium
Hamdi, Rafiq; Royal Meteorological Institute, Brussels, Belgium
Villanueva-Birriel, Cecille; Earth and Life Institute, Georges Lemaître Centre for Earth and Climate Research, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Marbaix, Philippe; Earth and Life Institute, Georges Lemaître Centre for Earth and Climate Research, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Van Ypersele, Jean-Pascal; Earth and Life Institute, Georges Lemaître Centre for Earth and Climate Research, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Wouters, Hendrick; Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
Vanden Broucke, Sam; Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
van Lipzig, Nicole P.M.; Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
Doutreloup, Sébastien ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Wyard, Coraline ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Scholtzen, Chloé; Department of Geosciences University of Oslo, Oslo, Norway
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Caluwaerts, Steven; Royal Meteorological Institute, Brussels, and Department of Physics and Astronomy, Ghent University, Ghent, Belgium
Termonia, Piet; Royal Meteorological Institute, Brussels, and Department of Physics and Astronomy, Ghent University, Ghent, Belgium
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Agilan, V., and N. Umamahesh, 2016: Modelling nonlinear trend for developing non-stationary rainfall intensity–duration–frequency curve. Int. J. Climatol., 37, 1265–1281, https://doi.org/10.1002/joc.4774.
Argüeso, D., J. P. Evans, L. Fita, and K. J. Bormann, 2014: Temperature response to future urbanization and climate change. Climate Dyn., 42, 2183–2199, https://doi.org/10.1007/s00382-013-1789-6.
Ban, N., J. Schmidli, and C. Schär, 2015: Heavy precipitation in a changing climate:Does short-termsummer precipitation increase faster? Geophys. Res. Lett., 42, 1165–1172, https://doi.org/10.1002/2014GL062588.
Ban, N., and Coauthors, 2021: The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: Evaluation of precipitation. Climate Dyn., 57, 275–302, https://doi.org/10.1007/s00382-021-05708-w.
Beck, H. E., E. F. Wood, M. Pan, C. K. Fisher, D. Miralles, A. I. van Dijk, T. R. McVicar, and R. F. Adler, 2019:MSWEPV2 global 3-hourly 0.18 precipitation: Methodology and quantitative assessment. Bull. Amer. Meteor. Soc., 100, 473–500, https://doi.org/10.1175/BAMS-D-17-0138.1.
Beirlant, J., Y. Goegebeur, J. Segers, and J. Teugels, 2004: Statistics of Extremes: Theory and Applications. John Wiley and Sons, 512 pp.
Berg, P., O. B. Christensen, K. Klehmet, G. Lenderink, J. Olsson, C. Teichmann, and W. Yang, 2019: Summertime precipitation extremes in a EURO-CORDEX 0.118 ensemble at an hourly resolution. Nat. Hazards Earth Syst. Sci., 19, 957–971, https://doi.org/10.5194/nhess-19-957-2019.
Brisson, E., M. Demuzere, and N. P. van Lipzig, 2016a: Modelling strategies for performing convection-permitting climate simulations. Meteor. Z., 25, 149–163, https://doi.org/10.1127/metz/2015/0598.
Brisson, E., K. Van Weverberg, M. Demuzere, A. Devis, S. Saeed, M. Stengel, and N. P. M. van Lipzig, 2016b: How well can a convection-permitting climate model reproduce decadal statistics of precipitation, temperature and cloud characteristics?Climate Dyn., 47, 3043–3061, https://doi.org/10.1007/s00382-016-3012-z.
Bubnová, R., G. Hello, P. Bénard, and J.-F.Geleyn, 1995: Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system. Mon. Wea. Rev., 123, 515–535, https://doi.org/10.1175/1520-0493(1995)123,0515:IOTFEE.2.0.CO;2.
Burlando, P., and R. Rosso, 1996: Scaling and multiscaling models of depth-duration-frequency curves for storm precipitation. J. Hydrol., 187, 45–64, https://doi.org/10.1016/S0022-1694(96)03086-7.
Chandler, R. E., and E. M. Scott, 2011: Statistical Methods for Trend Detection and Analysis in the Environmental Sciences. John Wiley and Sons, 368 pp.
Chavez-Demoulin, V., and A. C. Davison, 2012: Modelling time series extremes. REVSTAT. Stat. J., 10, 109–133.
Cheng, L., and A. AghaKouchak, 2014: Nonstationary precipitation intensity-duration-frequency curves for infrastructure design in a changing climate. Sci. Rep., 4, 7093, https://doi.org/10.1038/srep07093.
Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag, 208 pp.
Coppola, E., and Coauthors, 2020: A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate Dyn., 55, 3–34, https://doi.org/10.1007/s00382-018-4521-8.
Cortés-Hernández, V. E., F. Zheng, J. Evans, M. Lambert, A. Sharma, and S. Westra, 2016: Evaluating regional climate models for simulating sub-daily rainfall extremes. Climate Dyn., 47, 1613–1628, https://doi.org/10.1007/s00382-015-2923-4.
Davison, A. C., and M. M. Gholamrezaee, 2011: Geostatistics of extremes. Proc. Roy. Soc., 468A, 581–608, https://doi.org/10.1098/rspa.2011.0412.
Davison, A. C., S.A. Padoan, andM.Ribatet, 2012: Statisticalmodeling of spatial extremes. Stat. Sci., 27, 161–186, https://doi.org/10.1214/11-STS376.
DeRidder,K., and H. Gallée, 1998:Land surface-induced regional climate change in southern Israel. J. Appl. Meteor., 37, 1470–1485, https://doi.org/10.1175/1520-0450(1998)037,1470:LSIRCC.2.0.CO;2.
De Troch, R., R. Hamdi, H. Van de Vyver, J.-F. Geleyn, and P. Termonia, 2013: Multiscale performance of the ALARO-0 model for simulating extreme summer precipitation climatology in Belgium. J. Climate, 26, 8895–8915, https://doi.org/10.1175/JCLI-D-12-00844.1.
De Troch, R., and Coauthors, 2014: Overview of a few regional climatemodels and climate scenarios for Belgium.Royal Meteorological Institute of Belgium Doc., 32 pp., http://doi.org/10.13140/2.1.4710.5604.
EEA, 2019: Economic losses from climate-related extremes in Europe. European EnvironmentAgency, https://www.eea.europa.eu/data-andmaps/indicators/direct-losses-from-weather-disasters-4/assessment.
Fosser, G., S. Khodayar, and P. Berg, 2015: Benefit of convection permitting climate model simulations in the representation of convective precipitation. Climate Dyn., 44, 45–60, https://doi.org/10.1007/s00382-014-2242-1.
Fosser, G., S. Khodayar, and P. Berg, 2017: Climate change in the next 30 years: What can a convection-permitting model tell us that we did not already know? Climate Dyn., 48, 1987–2003, https://doi.org/10.1007/s00382-016-3186-4.
Gallée, H., and G. Schayes, 1994: Development of a threedimensional meso-g primitive equation model: Katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon. Wea. Rev., 122, 671–685, https://doi.org/10.1175/1520-0493(1994)122,0671:DOATDM.2.0.CO;2.
Gerard, L., J.-M. Piriou, R. Brozková, J.-F. Geleyn, and D. Banciu, 2009: Cloud and precipitation parameterization in a mesogamma-scale operationalweather predictionmodel. Mon. Wea. Rev., 137, 3960–3977, https://doi.org/10.1175/2009MWR2750.1.
Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175–183.
Gupta, V. K., and E. Waymire, 1990: Multiscaling properties of spatial rainfall and river flow distributions. J. Geophys. Res., 95, 1999–2009, https://doi.org/10.1029/JD095iD03p01999.
Helsen, S., and Coauthors, 2020: Consistent scale-dependency of future increases in hourly extreme precipitation in two convectionpermitting climate models. Climate Dyn., 54, 1267–1280, https://doi.org/10.1007/s00382-019-05056-w.
Jacob, D., and Coauthors, 2014: EURO-CORDEX: New highresolution climate change projections for European impact research. Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2.
Jacob, D., and Coauthors, 2020: Regional climate downscaling over Europe: Perspectives from the EURO-CORDEX community. Reg. Environ. Change, 20, 51, https://doi.org/10.1007/s10113-020-01606-9.
Kendon,E. J., N. M. Roberts,H. J. Fowler, M. J.Roberts, S.C. Chan, and C.A. Senior, 2014: Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Climate Change, 4, 570–576, https://doi.org/10.1038/nclimate2258.
Kendon,E. J, and Coauthors, 2017: Do convection-permitting regional climate models improve projections of future precipitation change? Bull. Amer. Meteor. Soc., 98, 79–93, https://doi.org/10.1175/BAMS-D-15-0004.1.
Koenker, R., 2005: Quantile Regression. Cambridge University Press, 349 pp.
Koenker, R., and J. A. F. Machado, 1999: Goodness of fit and related inference processes for quantile regression. J. Amer. Stat. Assoc., 94, 1296–1310, https://doi.org/10.1080/01621459.1999.10473882.
Leadbetter, M., G. Lindgren, and H. Rootzén, 1983: Extremes and Related Properties of Random Sequences and Processes. Springer, 336 pp.
Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511–514, https://doi.org/10.1038/ngeo262.
Lenderink, G., and E. van Meijgaard, 2010: Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett., 5, 025208, https://doi.org/10.1088/1748-9326/5/2/025208.
Lugrin, T.,A. C.Davison, and J.A. Tawn, 2016:Bayesian uncertainty management in temporal dependence of extremes. Extremes, 19, 491–515, https://doi.org/10.1007/s10687-016-0258-0.
Maraun, D., H. W. Rust, and T. J. Osborn, 2009: The annual cycle of heavy precipitation across the United Kingdom: A model based on extreme value statistics. Int. J. Climatol., 29, 1731–1744, https://doi.org/10.1002/joc.1811
Met Office, 2021: UK Climate Projections (UKCP). Met Office, accessed 14 July 2021, https://www.metoffice.gov.uk/research/approach/collaboration/ukcp/index/.
Naveau, P., A. Guillou, D. Cooley, and J. Diebolt, 2009: Modeling pairwise dependence of maxima in space. Biometrika, 96, 1–17, https://doi.org/10.1093/biomet/asp001.
Ntegeka, V., and P. Willems, 2008: Trends and multidecadal oscillations in rainfall extremes, based on a more than 100-year time series of 10 min rainfall intensities at Uccle, Belgium. Water Resour. Res., 44,W07402, https://doi.org/10.1029/2007WR006471.
Ouarda, T. B. M. J., L. A. Yousef, and C. Charron, 2018: Nonstationary intensity-duration-frequency curves integrating information concerning teleconnections and climate change. Int. J. Climatol., 39, 2306–2323, https://doi.org/10.1002/joc.5953.
Pan, L.-L., S.-H. Chen, D. Cayan, M.-Y. Lin, Q. Hart, M.-H. Zhang, Y. Liu, and J. Wang, 2011: Influences of climate change on California and Nevada regions revealed by a highresolution dynamical downscaling study. Climate Dyn., 37, 2005–2020, https://doi.org/10.1007/s00382-010-0961-5.
Prein, A. F., and Coauthors, 2015: A review on regional convectionpermitting climate modeling: Demonstrations, prospects, and challenge. Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475.
Prein, A. F., and Coauthors, 2016: Precipitation in the EURO-CORDEX 0.118 and 0.448 simulations:High resolution, high benefits? Climate Dyn., 46, 383–412, https://doi.org/10.1007/s00382-015-2589-y.
Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 48–52, https://doi.org/10.1038/nclimate3168.
Rasmussen, S., J. Christensen,M. Drews, D. Gochis, and J. Refsgaard, 2012: Spatial scale characteristics of precipitation simulated by regional climate models and the implications for hydrological modelling. J. Hydrometeor., 13, 1817–1835, https://doi.org/10.1175/JHM-D-12-07.1.
Reszler, C., M. B. Switanek, and H. Truhetz, 2018: Convectionpermitting regional climate simulations for representing floods in small- and medium-sized catchments in the Eastern Alps. Nat. Hazards Earth Syst. Sci., 18, 2653–2674, https://doi.org/10.5194/nhess-18-2653-2018.
Ribatet,M.,R. Singleton, andRCore Team, 2013: SpatialExtremes: Modelling spatial extremes, version 2.0-0 R package, https://CRAN.R-project.org/package5SpatialExtremes.
Rockel, B., A. Will, and A. Hense, 2008: The regional climate model COSMO-CLM (CCLM). Meteor. Z., 17, 347–348, https://doi.org/10.1127/0941-2948/2008/0309
Schär, C., and Coauthors, 2020: Kilometer-scale climate models: Prospects and challenges. Bull. Amer. Meteor. Soc., 101, E567– E587, https://doi.org/10.1175/BAMS-D-18-0167.1.
Schindler, A., D. Maraun, and J. Luterbacher, 2012: Validation of the present day annual cycle in heavy precipitation over the British Islands simulated by 14 RCMs. J. Geophys. Res., 117, D18107, https://doi.org/10.1029/2012JD017828.
Shikano, S., 2019:Hypothesis testing in theBayesian framework. Swiss Political Sci. Rev., 25, 288–299, https://doi.org/10.1111/spsr.12375.
Smith, R. L., and I. Weissman, 1994: Estimating the extremal index. J. Roy. Stat. Soc., 56B, 515–528, https://doi.org/10.1111/j.2517-6161.1994.tb01997.x.
Tabari, H., and Coauthors, 2016: Local impact analysis of climate change on precipitation extremes: Are high-resolution climate models needed for realistic simulations? Hydrol. Earth Syst. Sci., 20, 3843–3857, https://doi.org/10.5194/hess-20-3843-2016.
Termonia, P., and Coauthors, 2018a: The ALADIN system and its canonicalmodel configurationsAROMECY41T1 andALARO CY40T1. Geosci. Model Dev., 11, 257–281, https://doi.org/10.5194/gmd-11-257-2018.
Van de Vyver, H., 2012: Spatial regression models for extreme precipitation in Belgium. Water Resour. Res., 48, W09549, https://doi.org/10.1029/2011WR011707.
Van de Vyver, H., 2015a: Bayesian estimation of rainfall intensity-durationfrequency relationships. J. Hydrol., 529, 1451–1463, https://doi.org/10.1016/j.jhydrol.2015.08.036.
Van de Vyver, H., 2015b: On the estimation of continuous 24-h precipitation maxima. Stochastic Environ. Res. Risk Assess., 29, 653–663, https://doi.org/10.1007/s00477-014-0912-5.
Van de Vyver, H., 2018: A multiscaling-based intensity-duration-frequency model for extreme precipitation. Hydrol. Processes, 32, 1635–1647, https://doi.org/10.1002/hyp.11516.
Van de Vyver, H., 2021: R code for Bayesian estimation of rainfall intensity– duration–frequency (IDF) relationships (version V1). Zenodo, https://doi.org/10.5281/zenodo.4644184.
Van de Vyver, H., B. Van Schaeybroeck, R. De Troch, R. Hamdi, and P. Termonia, 2019: Modeling the scaling of short-duration precipitation extremes with temperature. Earth Space Sci., 6, 2031–2041, https://doi.org/10.1029/2019EA000665.
Van de Vyver, H., B. Van Schaeybroeck, R. De Troch, R. Hamdi, and P. Termonia, 2021:Rcode for modeling the scaling of short-duration precipitation extremes with temperature (version V1). Zenodo, https://doi.org/10.5281/zenodo.4644567.
Vannière, B., and Coauthors, 2019: Multi-model evaluation of the sensitivity of the global energy budget and hydrological cycle to resolution. Climate Dyn., 52, 6817–6846, https://doi.org/10.1007/s00382-018-4547-y.
Vannitsem, S., and P. Naveau, 2007: Spatial dependences among precipitation maxima over Belgium. Nonlinear Processes Geophys., 14, 621–630, https://doi.org/10.5194/npg-14-621-2007.
Van Weverberg, K., E. Goudenhoofdt, U. Blahak, E. Brisson, M. Demuzere, P. Marbaix, and J.-P. van Ypersele, 2014: Comparison of one-moment and two-moment bulk microphysics for high-resolution climate simulations of intense precipitation. Atmos. Res., 147–148, 145–161, https://doi.org/10.1016/j.atmosres.2014.05.012.
Wasko, C., and A. Sharma, 2014: Quantile regression for investigating scaling of extreme precipitation with temperature. Water Resour. Res., 50, 3608–3614, https://doi.org/10.1002/2013WR015194.
Westra, S., and Coauthors, 2014: Future changes to the intensity and frequency of short-duration extreme rainfall.Rev. Geophys., 52, 522–555, https://doi.org/10.1002/2014RG000464.
Willems, P., 2000: Compound intensity/duration/frequency-relationships of extreme precipitation for two seasons and two storm types. J. Hydrol., 233, 189–205, https://doi.org/10.1016/S0022-1694(00)00233-X.
Wouters, H., M. Demuzere, U. Blahak, K. Fortuniak, B. Maiheu, J. Camps, D. Tielemans, and N. P. M. van Lipzig, 2016: The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling: Description and application with the COSMO-CLM model for a Belgian summer. Geosci. Model Dev., 9, 3027–3054, https://doi.org/10.5194/gmd-9-3027-2016.
Wyard, C., C. Scholzen, X. Fettweis, J. Van Campenhout, and L. François, 2017: Decrease in climatic conditions favouring floods in the south-east of Belgium over 1959-2010 using the regional climate model MAR. Int. J. Climatol., 37, 2782–2796, https://doi.org/10.1002/joc.4879
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.