Article (Scientific journals)
A review in radiomics: Making personalized medicine a reality via routine imaging.
Guiot, Julien; Vaidyanathan, Akshayaa; DEPREZ, Louis et al.
2022In Medicinal Research Reviews
Peer Reviewed verified by ORBi
 

Files


Full Text
med.21846(1).pdf
Publisher postprint (964.83 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
artificial intelligence; deep learning; machine learning; personalized medicine; radiomics
Abstract :
[en] Radiomics is the quantitative analysis of standard-of-care medical imaging; the information obtained can be applied within clinical decision support systems to create diagnostic, prognostic, and/or predictive models. Radiomics analysis can be performed by extracting hand-crafted radiomics features or via deep learning algorithms. Radiomics has evolved tremendously in the last decade, becoming a bridge between imaging and precision medicine. Radiomics exploits sophisticated image analysis tools coupled with statistical elaboration to extract the wealth of information hidden inside medical images, such as computed tomography (CT), magnetic resonance (MR), and/or Positron emission tomography (PET) scans, routinely performed in the everyday clinical practice. Many efforts have been devoted in recent years to the standardization and validation of radiomics approaches, to demonstrate their usefulness and robustness beyond any reasonable doubts. However, the booming of publications and commercial applications of radiomics approaches warrant caution and proper understanding of all the factors involved to avoid "scientific pollution" and overly enthusiastic claims by researchers and clinicians alike. For these reasons the present review aims to be a guidebook of sorts, describing the process of radiomics, its pitfalls, challenges, and opportunities, along with its ability to improve clinical decision-making, from oncology and respiratory medicine to pharmacological and genotyping studies.
Disciplines :
Radiology, nuclear medicine & imaging
Author, co-author :
Guiot, Julien   ;  Université de Liège - ULiège > Département de pharmacie > Département de pharmacie
Vaidyanathan, Akshayaa 
DEPREZ, Louis  ;  Centre Hospitalier Universitaire de Liège - CHU > Département de Physique Médicale > Service médical de radiodiagnostic
Zerka, Fadila
Danthine, Denis  ;  Centre Hospitalier Universitaire de Liège - CHU > Département de Physique Médicale > Service médical de médecine nucléaire et imagerie onco
Frix, Anne-Noëlle ;  Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de pneumologie - allergologie
Lambin, Philippe
Bottari, Fabio
Tsoutzidis, Nathan
Miraglio, Benjamin
Walsh, Sean
Vos, Wim
Hustinx, Roland  ;  Université de Liège - ULiège > Département des sciences cliniques > Médecine nucléaire
Ferreira, Marta
LOVINFOSSE, Pierre  ;  Centre Hospitalier Universitaire de Liège - CHU > Département de Physique Médicale > Service médical de médecine nucléaire et imagerie onco
Leijenaar, Ralph T. H. 
More authors (6 more) Less
 These authors have contributed equally to this work.
Language :
English
Title :
A review in radiomics: Making personalized medicine a reality via routine imaging.
Publication date :
2022
Journal title :
Medicinal Research Reviews
ISSN :
0198-6325
eISSN :
1098-1128
Publisher :
John Wiley & Sons, Hoboken, United States - New Jersey
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
© 2021 Wiley Periodicals LLC.
Available on ORBi :
since 02 September 2021

Statistics


Number of views
941 (19 by ULiège)
Number of downloads
2595 (13 by ULiège)

Scopus citations®
 
138
Scopus citations®
without self-citations
132
OpenCitations
 
64
OpenAlex citations
 
162

Bibliography


Similar publications



Contact ORBi