meteorites; meteors; meteoroids; minor planets; asteroids: general; comets: general; techniques: photometric; atmospheric effects; methods: data analysis
Abstract :
[en] Context. The luminous efficiency, τ, can be used to compute the pre-atmospheric masses of meteoroids from corresponding recorded meteor brightnesses. The derivation of the luminous efficiency is non-trivial and is subject to biases and model assumptions. This has led to greatly varying results in the last decades of studies. Aims: The present paper aims to investigate how a reduction in various observational biases can be achieved to derive (more) reliable values for the luminous efficiency. Methods: A total of 281 meteors observed by the Fireball Recovery and InterPlanetary Observation Network (FRIPON) are studied. The luminous efficiencies of the events are computed using an ablation-based model. The relations of τ as a function of the pre-atmospheric meteoroid velocity, ve, and mass, Me, are studied. Various aspects that could render the method less valid, cause inaccuracies, or bias the results are investigated. On this basis, the best suitable meteors were selected for luminous efficiency computations. Results: The presented analysis shows the limits of the used method. The most influential characteristics that are necessary for reliable results for the τ computation were identified. We study the dependence of τ on the assumed meteoroid's density, ρ, and include improved ρ-values for objects with identified meteoroid stream association. Based on the discovered individual biases and constraints we create a pre-debiased subset of 54 well-recorded events with a relative velocity change >80%, a final height <70 km, and a Knudsen number Kn < 0.01; this last value indicates that the events were observed in the continuum-flow regime. We find τ-values in the range between 0.012% and 1.1% for this pre-debiased subset and relations of τ to ve and Me of: τ=7.33⋅ve^−1.10 and τ=0.28⋅Me^−0.33. Conclusions: The derived luminous efficiency of meteoroids depends on the assumed material density. Our results indicate that the applied debiasing method improves the analysis of τ from decelerated meteoroids. The underlying method is only valid for meteors in the continuum-flow regime. These events tend to have low end heights, large masses, and high deceleration.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Drolshagen, E.; University of Oldenburg, Division for Medical Radiation Physics and Space Environment, Germany
Ott, T.; University of Oldenburg, Division for Medical Radiation Physics and Space Environment, Germany
Koschny, D.; European Space Agency, ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands ; Chair of Astronautics, TU Munich, Germany
Drolshagen, G.; University of Oldenburg, Division for Medical Radiation Physics and Space Environment, Germany
Vaubaillon, J.; IMCCE, Observatoire de Paris, PSL Research University, CNRS UMR 8028, Sorbonne Université, France
Colas, F.; IMCCE, Observatoire de Paris, PSL Research University, CNRS UMR 8028, Sorbonne Université, France
Zanda, B.; Institut de Minéralogie, Physique des Matériaux et Cosmochimie (IMPMC), Muséum National d'Histoire Naturelle, CNRS UMR 7590, Sorbonne Université, 75005, Paris, France ; IMCCE, Observatoire de Paris, PSL Research University, CNRS UMR 8028, Sorbonne Université, France ; FRIPON (Fireball Recovery and InterPlanetary Observation) and Vigie-Ciel Team, France
Bouley, S.; GEOPS-Géosciences, CNRS, Université Paris-Saclay, 91405, Orsay, France ; IMCCE, Observatoire de Paris, PSL Research University, CNRS UMR 8028, Sorbonne Université, France ; FRIPON (Fireball Recovery and InterPlanetary Observation) and Vigie-Ciel Team, France
Jeanne, S.; IMCCE, Observatoire de Paris, PSL Research University, CNRS UMR 8028, Sorbonne Université, France ; FRIPON (Fireball Recovery and InterPlanetary Observation) and Vigie-Ciel Team, France
Malgoyre, A.; Service Informatique Pythéas (SIP) CNRS - OSU Institut Pythéas - UMS 3470, Marseille, France ; FRIPON (Fireball Recovery and InterPlanetary Observation) and Vigie-Ciel Team, France
Birlan, M.; IMCCE, Observatoire de Paris, PSL Research University, CNRS UMR 8028, Sorbonne Université, France ; FRIPON (Fireball Recovery and InterPlanetary Observation) and Vigie-Ciel Team, France ; Astronomical Institute of the Romanian Academy, Bucharest, 040557, Romania
Vernazza, P.; Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France ; FRIPON (Fireball Recovery and InterPlanetary Observation) and Vigie-Ciel Team, France
Gardiol, D.; INAF - Osservatorio Astrofisico di Torino - Via Osservatorio 20, 10025, Pino Torinese, TO, Italy
Nedelcu, D. A.; Astronomical Institute of the Romanian Academy, Bucharest, 040557, Romania ; MOROI (Meteorites Orbits Reconstruction by Optical Imaging) Astronomical Institute of the Romanian Academy, Bucharest, Romania
Rowe, J.; SCAMP (System for Capture of Asteroid and Meteorite Paths), FRIPON, UK
Forcier, M.; Planétarium Rio Tinto Alcan / Espace pour la vie, Montréal, Québec, Canada ; Réseau DOME, (Détection et Observation de Météores/Detection and Observation of Meteors), Canada
Trigo-Rodriguez, J. M.; SPMN (SPanish Meteor Network), FRIPON, Spain ; Institute of Space Sciences (CSIC), Campus UAB, Facultat de Ciències, 08193 Bellaterra, Barcelona, Catalonia, Spain ; Institut d'Estudis Espacials de Catalunya (IEEC), 08034, Barcelona, Catalonia, Spain
Peña-Asensio, E.; Institute of Space Sciences (CSIC), Campus UAB, Facultat de Ciències, 08193 Bellaterra, Barcelona, Catalonia, Spain ; Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
Lamy, H.; FRIPON-Belgium, Belgium ; Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
Ferrière, L.; Natural History Museum, Burgring 7, 1010, Vienna, Austria ; FRIPON-Austria, Austria
Barghini, D.; INAF - Osservatorio Astrofisico di Torino - Via Osservatorio 20, 10025, Pino Torinese, TO, Italy ; Università degli Studi di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125, Torino, TO, Italy
Carbognani, A.; INAF 0- Osservatorio di Astrofisica e Scienza dello Spazio Via Piero Gobetti 93/3, 40129, Bologna, BO, Italy
Di Martino, M.; INAF - Osservatorio Astrofisico di Torino - Via Osservatorio 20, 10025, Pino Torinese, TO, Italy
Rasetti, S.; INAF - Osservatorio Astrofisico di Torino - Via Osservatorio 20, 10025, Pino Torinese, TO, Italy
Valsecchi, G. B.; INAF - Istituto di Astrofisica e Planetologia Spaziali Via del Fosso del Cavaliere 100, 00133, Roma, RM, Italy ; CNR - Istituto di Fisica Applicata Nello Carrara, Via Madonna del Piano, 10 50019, Sesto Fiorentino (FI), Italy
Volpicelli, C. A.; INAF - Osservatorio Astrofisico di Torino - Via Osservatorio 20, 10025, Pino Torinese, TO, Italy
Di Carlo, M.; INAF - Osservatorio Astrofisico di Torino - Via Osservatorio 20, 10025, Pino Torinese, TO, Italy
Knapic, C.; INAF - Osservatorio Astrofisico di Torino - Via Osservatorio 20, 10025, Pino Torinese, TO, Italy
Pratesi, G.; INAF - Osservatorio Astrofisico di Torino - Via Osservatorio 20, 10025, Pino Torinese, TO, Italy ; Università degli Studi di Firenze - Dipartimento di Scienze della Terra, Via Giorgio La Pira, 4, 50121, Firenze, FI, Italy
Riva, W.; Osservatorio Astronomico del Righi, Via Mura delle Chiappe 44R, 16136, Genova, GE, Italy
Stirpe, G. M.; INAF - Osservatorio Astrofisico di Torino - Via Osservatorio 20, 10025, Pino Torinese, TO, Italy
Zorba, S.; INAF - Osservatorio Astrofisico di Torino - Via Osservatorio 20, 10025, Pino Torinese, TO, Italy
Hernandez, O.; Planétarium Rio Tinto Alcan / Espace pour la vie, Montréal, Québec, Canada ; Réseau DOME, (Détection et Observation de Météores/Detection and Observation of Meteors), Canada
Grandchamps, A.; Planétarium Rio Tinto Alcan / Espace pour la vie, Montréal, Québec, Canada ; Réseau DOME, (Détection et Observation de Météores/Detection and Observation of Meteors), Canada
Jehin, Emmanuel ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Origines Cosmologiques et Astrophysiques (OrCa)
Jobin, M.; Planétarium Rio Tinto Alcan / Espace pour la vie, Montréal, Québec, Canada ; Réseau DOME, (Détection et Observation de Météores/Detection and Observation of Meteors), Canada
King, A.; SCAMP (System for Capture of Asteroid and Meteorite Paths), FRIPON, UK ; Natural History Museum, Cromwell Road, London, UK
Sanchez-Lavega, A.; Dep. Física Aplicada I, Escuela de Ingeniería de Bilbao, Universidad del País Vasco/Euskal Herriko Unibertsitatea, 48013, Bilbao, Spain ; Aula EspaZio Gela, Escuela de Ingeniería de Bilbao, Universidad del País Vasco/Euskal Herriko Unibertsitatea, 48013, Bilbao, Spain
Toni, A.; FRIPON-Netherlands, European Space Agency, SCI-SC, Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands ; European Space Agency, ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands
Rimola, A.; Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
Poppe, B.; University of Oldenburg, Division for Medical Radiation Physics and Space Environment, Germany)
Jopek, T. J., Rudawska, R., & Bartczak, P. 2008, Earth Moon Planet, 102, 73
Kikwaya J.-B., Campbell-Brown, M., & Brown, P. G. 2011, A&A 530, A113
Koschny, D., Drolshagen, E., Drolshagen, S., et al. 2017, PSS, 143, 230
LeBlanc, A. G., Murray, I. S., Hawkes, R. L., et al. 2000, MNRAS 313, L9
Le Pichon, A., Blanc, E., Hauchecorne, A., 2009, Infrasound Monitoring for Atmospheric Studies (Springer)
Levin, B. Yu. 1956, Physical Theory of Meteors and MeteorMatter in the Solar System, (Moscow: USSR Academy of Sciences)
Levison, H. F., & Duncan, M. J. 1994, Icarus, 108, 18
Macke, R. J. 2010, Dissertation (University of Central Florida)
Micheli, M. 2013, Dissertation (University of Hawaii at Manoa)
Micheli, M., Tholen, D. J., Jenniskens, P. 2016, Icarus, 267, 64
Milone, E. F., & Wilson, W. J. F. 2014, Solar System Astrophysics-Planetary Atmospheres and the Outer Solar System (New York: Springer Science & Business Media)
Moorhead, A. V. 2016, MNRAS, 455, 4, 4329
Moorhead, A. V., Blaauw, R. C., Moser, D. E., et al. 2017, MNRAS, 472, 3833
Moreno-Ibáñez, M., Silber, E. A., Gritsevich, M., & Trigo-Rodríguez, J. M. 2018, ApJ, 863, 2, 174
Narziev, M. 2019, PSS, 173, 42
Pätzold, M., Andert, T., Hahn, M., et al. 2016. Nature, 530, 63
Popova, O. P., Sidneva, S. N., Shuvalov, V. V., & Strelkov, A. S. 2000, Earth Moon Planets, 82-83, 109
Rudawska, R., Matlovič, P., Tóth, J., & Kornoš, L. 2015, PSS, 118, 38
Sosa, A., & Fernández, J. A. 2009, MNRAS, 393, 192
Southworth, R. B., & Hawkins, G. S. 1963, Smithsonian Contributions to Astrophysics, 7, 261
Subasinghe, D., Campbell-Brown, M., & Stokan, E. 2017, PSS, 143, 71
Subasinghe, D., & Campbell-Brown, M. 2018, ApJ, 155, 88
Sutherland, W. 1893, Phil. Mag., 5, 507
Stulov, V. P., Mirskii, V. N., Vislyi, A. I. 1995, Aerodinamika bolidov (Aerodynamics of Bolides) (Moscow, Russia: Nauka)
Trigo-Rodríguez, J. M. 2019, Hypersonic Meteoroid Physics, eds. Colonna G., Capitelli M. & Laricchiuta A., 4-1
Trigo-Rodríguez, J. M., & Blum, J. 2009, PSS, 57, 243
Trigo-Rodríguez, J. M., & Llorca, J. 2006, MNRAS, 372, 655
Trigo-Rodríguez, J. M., & Llorca, J. 2007, Adv. Space Res., 39, 517
Trigo-Rodríguez, J. M., Llorca, J., Borovicka, J., & Fabregat, J. 2003, MAPS, 38, 1283
Trigo-Rodríguez, J. M., Llorca, J., & Fabregat, J. 2004, MNRAS, 348, 802
Trigo-Rodríguez, J. M., Rimola, A., Tanbakouei, S., Cabedo-Soto, V., & Lee, M. R. 2019, Space Sci. Rev., 215, 18
Valsecchi, G. B., Jopek, T. J., & Froeschlé, Cl. 1999, MNRAS 304, 4, 743