Available on ORBi since
31 August 2021
Article (Scientific journals)
A 3D approach to model the taper of irregular tree stems: making plots biomass estimates comparable in tropical forests
Bauwens, Sébastien  ; Ploton, Pierre; Fayolle, Adeline  et al.
2021 • In Ecological Applications
Peer Reviewed verified by ORBi
 

Files


Full Text
eap.2451.pdf
Author postprint (39.91 MB)
Annexes
Model_BauwensEtAl_2021.R
(2.42 kB)
Raw_data_BauwensEtAl_2021.csv
(1.54 MB)

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Allometric above-ground biomass model; biomass changes; buttresses; close-range terrestrial photogrammetry; point of measurement of stem diameter; stem profile; taper; terrestrial laser scanning; structure form motion
Abstract :
[en] In tropical forests, the high proportion of trees showing irregularities at the stem base complicates forest monitoring. For example, in the presence of buttresses, the height of the point of measurement (HPOM) of the stem diameter (DPOM) is raised from 1.3 m, the standard breast height, up to a regular part of the stem. While DPOM is the most important predictor for tree aboveground biomass (AGB) estimates, the lack of harmonized HPOM for irregular trees in forest inventory increases the uncertainty in plot-level AGB stock and stock change estimates. In this study, we gathered an original non-destructive 3D dataset collected with terrestrial laser scanning and close range terrestrial photogrammetry tools in three sites in central Africa. For the 228 irregularly shaped stems sampled, we developed a set of taper models to harmonize HPOM by predicting the equivalent diameter at breast height (DBH’) from a DPOM measured at any height. We analyzed the effect of using DBH’ on tree-level and plot-level AGB estimates. To do so, we used destructive AGB data for 140 trees and forest inventory data from eight 1-ha-plots in the Republic of Congo. Our results showed that our best simple taper model predicts DBH’ with a relative mean absolute error of 3.7% (R²=0.98) over a wide DPOM range of 17 to 249 cm. Based on destructive AGB data, we found that the AGB allometric model calibrated with harmonized HPOM data was more accurate than the conventional local and pantropical models. At the plot level, the comparison of AGB stock estimates with and without HPOM harmonization showed an increasing divergence with the increasing share of irregular stems (up to -15%). The harmonization procedure developed in this study could be implemented as a standard practice for AGB monitoring in tropical forests as no additional forest inventory measurements is required. This would probably lead to important revisions of the AGB stock estimates in regions having a large number of irregular tree stems and increase their carbon sink estimates. The growing use of 3D data offers new opportunities to extend our approach and further develop general taper models in other tropical regions.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Bauwens, Sébastien ;  Université de Liège - ULiège > TERRA Research Centre
Ploton, Pierre;  AMAP, Univ Montpellier
Fayolle, Adeline  ;  Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Ligot, Gauthier ;  Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Loumeto, Joel;  University Marien NGOUABI
Lejeune, Philippe ;  Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Gourlet-Fleury, Sylvie;  CIRAD, Forêts et Sociétés
Language :
English
Title :
A 3D approach to model the taper of irregular tree stems: making plots biomass estimates comparable in tropical forests
Publication date :
13 September 2021
Journal title :
Ecological Applications
ISSN :
1051-0761
eISSN :
1939-5582
Publisher :
Wiley, United States - District of Columbia
Peer reviewed :
Peer Reviewed verified by ORBi

Statistics


Number of views
116 (21 by ULiège)
Number of downloads
57 (4 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenCitations
 
1

Bibliography


Similar publications



Contact ORBi