Electrochemical mechanism and effects of Fe doping and grinding process on the microstructural and electrochemical properties of Na2Co1-xFexSiO4 cathode material for sodium-ion batteries
[en] Sodium-based orthosilicates are considered promising candidates as positive electrode materials for rechargeable sodium-ion batteries (SIBs). Na2Co1-xFexSiO4 (NCFS), with x = 0.1 and 0.2 cathode materials have been synthesized by low cost method (improved solid-state). The effects of Fe substitution and grinding process on the structural, morphological, and electrochemical properties of Na2Co0.9Fe0.1SiO4 (NCFS1) and Na2Co0.8Fe0.2SiO4 (NCFS2) are deeply investigated. The prepared Na2Co1-xFexSiO4 cathodes are indexed based on the orthorhombic system with Pca21 space group with a slight difference in lattice parameters. The morphological properties are strongly determined by the suspension formalism, which has an impact on the electrochemical performances. The ball-milling process leads to enhanced electrochemical performance and higher reversible capacity although with capacity fading after 100 cycles. Na2Co0.8Fe0.2SiO4 demonstrated an initial discharge capacity at C/50 of 131.4 mAh.g−1 (1C= 272.7 mA.g−1) that is two times higher than that of the Na2Co0.9Fe0.1SiO4 (54.6 mAh.g−1 (1C= 272.27 mA.g−1)). All the above features and insights make the new materials highly promising for use as potential cathode material for SIBs.
Disciplines :
Chemistry
Author, co-author :
Trabelsi, Kawthar
Bodart, Jérôme ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Mahmoud, Abdelfattah ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Language :
English
Title :
Electrochemical mechanism and effects of Fe doping and grinding process on the microstructural and electrochemical properties of Na2Co1-xFexSiO4 cathode material for sodium-ion batteries
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Kim, S., Seo, D., Ma, X., Ceder, G., Kang, K., Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2 (2012), 710–721, 10.1002/aenm.201200026.
Slater, M.D., Kim, D., Lee, E., Johnson, C.S., Sodium-ion batteries. Adv. Funct. Mater. 23 (2013), 947–958, 10.1002/adfm.201200691.
Ma, X., Chen, H., Ceder, G., Electrochemical properties of monoclinic NaMnO2. J. Electrochem. Soc., 158, 2011, A1307, 10.1149/2.035112jes.
Kubota, K., Dahbi, M., Hosaka, T., Kumakura, S., Komaba, S., Towards K-Ion and Na-Ion batteries as“Beyond Li-Ion”. Chem. Record. 18 (2018), 1–22, 10.1002/tcr.201700057.
Zuo, W., Qiu, J., Liu, X., Ren, F., Liu, H., He, H., Luo, C., Li, J., Ortiz, G.F., Duan, H., Liu, J., Wang, M-S., Li, Ya., Fu, R., Yang, Y., The stability of P2-layered sodium transition metal oxides in ambient atmospheres. Nat. Commun., 11, 2020, 3544, 10.1038/s41467-020-17290-6.
Jin, T., Wang, P-F., Wang, Q-C., Zhu, K., Deng, T., Zhang, J., Zhang, W., Yang, X-Q., Jiao, L., Wang, C., Realizing complete solid-solution reaction in high sodium contentP2-type cathode for high-performance sodium-ion batteries. J. Angewandte Chemie Int. Ed. 59 (2020), 14511–14516, 10.1002/anie.202003972.
Liu, K., Lei, P., Wan, X., Zheng, W., Xiang, X., Cost-effective synthesis and superior electrochemical performance of sodium vanadium fluorophosphate nanoparticles encapsulated in conductive graphene network as high-voltage cathode for sodium-ion batteries. J. Colloid Interface Sci. 532 (2018), 426–432, 10.1016/j.jcis.2018.07.114.
Luo, D., Lei, P., Tian, G., Huang, Y., Ren, X., de Xiang, X., Insight into electrochemical properties and reaction mechanism of a cobalt-rich prussian blue analogue cathode in a NaSO3CF3 electrolyte for aqueous sodium-ion batteries. J. Phys. Chem. C 124 (2020), 5958–5965, 10.1021/acs.jpcc.9b11758.
Yoshida, H., Yabuuchi, N., Komaba, S., NaFe0.5Co0.5O2as high energy and power positive electrode for Na-Ion batteries. J. Electrochem. Commun. 34 (2013), 60–63, 10.1016/j.elecom.2013.05.012.
Nithya, V.D., Kalai Selvan, R., Karthikeyan, K., Lee, Y.S., Impact of Si4+ ions doping on the electrochemical cycling performance of NiTiO3 as anodes for Li-Ion batteries. J. Nanosci. Nanotechnol. 15 (2015), 694–702, 10.1166/jnn.2015.9165.
Kee, Y., Dimov, N., Staykov, A., Okada, S., Investigation of Metastable Na2FeSiO4 as a cathode material for na-ion secondary battery. J. Mater. Chem. Phys. 171 (2016), 45–49, 10.1016/j.matchemphys.2016.01.033.
Bai, Y., Zhang, X., Wang, X., Luo, Z., Chen, G., Preparation and performances of novel Na2FeSiO4/C composite with more stable polymorph as cathode material of sodium-ion batteries. J. Power Sources 430 (2019), 120–129, 10.1016/j.jpowsour.2019.05.015.
Kee, Y., Dimov, N., Staykov, A., Okada, S., Investigation of metastable Na2FeSiO4 as a cathode material for Na-ion secondary battery. J. Mater. Chem. Phys. 171 (2016), 45–49, 10.1016/j.matchemphys.2016.01.033.
Treacher, J.C., Wood, S.M., Islam, M.S., Kendrick, E., Na2CoSiO4 as a cathode material for sodium-ion batteries: structure, electrochemistry and diffusion pathways. PCCP 18 (2016), 32744–32752, 10.1039/C6CP06777H.
Mu, L., Xu, S., Li, Y., Hu, Y.S., Li, H., Chen, L., Huang, X., Prototype sodium-ion batteries using an air-stable and Co/Ni-Free O3-layered metal oxide cathode. Adv. Mater. 27 (2015), 6928–6933, 10.1002/adma.201502449.
Rangasamy, VS., Thayumanasundaram, S., Locquet, J.P., Solvothermal synthesis and electrochemical properties of Na2CoSiO4 and Na2CoSiO4/carbon nanotube cathode materials for sodium-ion batteries. Electrochim. Acta 276 (2018), 102–110, 10.1016/j.electacta.2018.04.166.
Guan, W., Pan, B., Zhou, P., Mi, J., Zhang, D., Xu, J., Jiang, Y., A high capacity, good safety and low cost Na2FeSiO4-based cathode for rechargeable sodium-ion battery. J. ACS Appl. Mater. Interfaces 9:27 (2017), 22369–22377, 10.1021/acsami.7b02385.
Dominko, R., Bele, M., Gaberscek, M., Remskar, M., Hanzel, D., Pejovnik, S., Jamnik, J., Impact of the carbon coating thickness on the electrochemical performance of LiFePO4 / C composites. J. Electrochem. Soc. 152 (2005), A607–A610, 10.1149/1.1860492.
Delacourt, C., Poizot, P., Levasseur, S., Masquelier, C., Size effects on carbon-free LiFePO4 powders: the key to superior energy density. Electrochem. Solid-State Lett. 9 (2006), A352–A355, 10.1149/1.2201987.
Chen, Y.H., Zhao, Y.M., An, X.N., Liu, J.M., Dong, Y.Z., Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochim. Acta 54 (2009), 5844–5850, 10.1016/j.electacta.2009.05.041.
Trabelsi, K., Karoui, K., Mahmoud, A., Bodart, J., Boschini, F., Ben Rhaiem, A., Dielectric relaxation behavior induced by Sodium migration in three-dimensional Co–O–Si framework including by Na2CoSiO4 structure. J. RSC Adv., 10, 2020, 27456, 10.1039/D0RA04912C.
Rietveld, H.M., A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2 (1969), 65–71, 10.1107/s0021889869006558.
Trabelsi, K., Karoui, K., Jomni, F., Ben Rhaiem, A., Optical and AC conductivity behavior of sodium orthosilicate Na2CoSiO4. J. Alloys Compd., 867, 2021, 159099, 10.1016/j.jallcom.2021.159099.
Zhang, S., Deng, C., Fu, B.L., Yang, S.Y., Ma, L., Effects of Cr doping on the electrochemical properties of Li2FeSiO4 cathode material for lithium-ion batteries. Electrochim. Acta 55 (2010), 8482–8489, 10.1016/j.electacta.2010.07.059 https://doi:.
Eeckhout, S.G., De Grave, E., McCammon, C.A., Vochten, R, Temperaturedependence of the hyperfine parameters of syntheticP21/cMg-Fe clinopyroxenes along the MgSiO3-FeSiO3join. J. Am. Mineral. 85 (2000), 943–952, 10.2138/am-2000-0708.
Brisbois, M., Caes, S., Sougrati, M.T., Vertruyen, B., Schrijnemakers, A., Cloots, R., Eshraghi, N., Hermann, R.P., Mahmoud, A., Boschini, F., Na2FePO4F/multi-walled carbon nanotubes for lithium-ion batteries: operando Mössbauer study of spray-dried composites. Solar Energy Mater. Solar Cells 148 (2016), 67–72, 10.1016/j.solmat.2015.09.005.
Mahmoud, A., Caes, S., Brisbois, M., Hermann, R.P., Berardo, L., Schrijnemakers, A., Malherbe, C., Eppe, G., Cloots, R., Vertruyen, B., Boschini, F., Spray-drying as a tool to disperse conductive carbon inside Na2FePO4F particles by addition of carbon black or carbon nanotubes to the precursor solution. J. Solid State Electrochem. 22 (2018), 103–112, 10.1007/s10008-017-3717-x.
Chen, X., Tang, Y., Fang, L., Zhang, H., Hu, C., Zhou, H., Self-assembly growth of flower-like BiFeO3powders at low temperature. J. Mater. Sci. Mater. Electron. 23 (2012), 1500–1503, 10.1007/s10854-011-0617-1.
feng Mao, W., Xiang Ma, C., Ma, Y., yuan Tang, Z., Synthesis of flower-like Li3V2(PO4)3/C cathode with mixed morphology for advanced lithium-ion batteries. Ionics 20 (2014), 897–900, 10.1007/s11581-014-1139-7.
Jiang, X., Xu, H., Liu, J., Yang, J., Mao, H., Hierarchical mesoporous Li2Mn0.5Fe0.5SiO4 and Li2Mn0.5Fe0.5SiO4 /C assembled by nanoparticles or nanoplates as a cathode material for lithium-ion batteries. Nano Energy 7 (2014), 1–9, 10.1016/j.nanoen.2014.04.005.
Liu, J., Huang, X., Li, Y., Sulieman, KM., X.Heband, F.Sun, Hierarchical nanostructures of cupric oxide on a copper substrate: controllable morphology and wettability. J. Mater. Chem. 16 (2006), 4427–4434, 10.1039/B611691D.
Thayumanasundaram, S., Rangasamy, V.S., Seo, J.W., Locquet, J.P., Effect of doping functionalized MWCNTs on the electrochemical performances of Li2CoSiO4 for lithium-ion batteries. J. Ionics 24 (2018), 1339–1347, 10.1007/s11581-017-2313-5.
Thayumanasundaram, S., Rangasamy, V.S., Seo, J.W., Locquet, J.P., Synthesis and electrochemical behavior of Li2CoSiO4 cathode with Pyrrolidinium-based ionic liquid electrolyte for lithium ion batteries. J. Ionics 20:7 (2014), 935–941, 10.1007/s11581-013-1057-0.
He, G., Popov, G., Nazar, L.F., Hydrothermal synthesis and electrochemical properties of Li2CoSiO4/C nanospheres. J. Chem. Mater. 25:7 (2013), 1024–1031, 10.1021/cm302823f.
Gong, Z.L., Li, Y.X., Yang, Y., Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries. J. Power Sources 174 (2007), 524–527, 10.1016/j.jpowsour.2007.06.250.
Thayumanasundarama, S., Rangasamya, VS., Seo, JW., Locquet, JP., Novel strategies to improve the structural and electrochemical stability of Li2CoSiO4 during cycling. Solid State Ion. 337 (2019), 161–169, 10.1016/j.ssi.2019.04.024.
Fehse, M., Bessas, D., Mahmoud, A., A. Diatta, Hermann, R.P., Stievano, L., Tahar Sougrati, M., The Fe4+/3+ Redox Mechanism in NaFeO2: a simultaneous operando nuclear resonance and X-ray scattering study. J. Batter. Supercaps 3:11 (2020), 1341–1349, 10.1002/batt.202000157.
Li, L., Zhu, L., Xu, LH., Cheng, TM., Wang, W., Li, X., QT Sui, Site-exchange of Li and M ions in silicate cathode materials Li2MSiO4 (M = Mn, Fe, Co and Ni): DFT calculations. J. Mater. Chem. A 2 (2014), 4251–4255, 10.1039/C3TA14885H.
Wang, M., Yang, M., Ma, L., Shen, X., Zhang, X., Structural evolution and electrochemical performance of Li2MnSiO4/C nanocomposite as cathode material for Li-Ion Batteries. J. Nanomater. 2014 (2014), 1–6, 10.1155/2014/368071.
Boczar, M., Krajewski, M., Ratynski, M., Hamankiewicz, B., Czerwinski, A., Synthesis of lithium-manganese orthosilicate and its application as cathode material in lithium-ion batteries. Int. J. Electrochem. Sci. 13 (2018), 11636–11647, 10.20964/2018.12.27.
Zhang, X., Han, Y., Kawatra, S.K., Effects of grinding media on grinding products and flotation performance of sulfide ores. Miner. Process. Extr. Metall. Rev. 42:3 (2020), 172–183, 10.1080/08827508.2019.1692831.
Wu, H., Zhang, Y., Zhang, X., Hui, K.S., Zhu, J., He, W., Low cost Na2FeSiO4/H-N-doped hard carbon nanosphere hybrid cathodes for high energy and power sodium-ion supercapacitors. J. Alloys Compd., 842, 2020, 155797, 10.1016/j.jallcom.2020.155797.
Chen, C-Y, Matsumoto, K., Nohira, T., Hagiwara, R., Na2MnSiO4 as a positive electrode material for sodium secondary batteries using an ionic liquid electrolyte. J. Electrochem. Commun. 45 (2014), 63–66, 10.1016/j.elecom.2014.05.017.
Wengang, L., Yunhua, X., Rong, Y., Synthesis and electrochemical properties of Li2MnSiO4/C nanoparticles via polyol process. Rare Met., 29, 2010, 511, 10.1007/s12598-010-0158-4.
Le, T.S., Hoa, Thu H., Truong, Duc Q., Direct synthesis of homogeneous Li2CoSiO4/C for enhanced ionic transport properties in Li-ion battery. J. Electroanal. Chem. 842 (2019), 133–139, 10.1016/j.jelechem.2019.04.064.
Huang, X., Li, X., Wang, H., Pan, Z., Qu, M., Yu, Z., Synthesis and electrochemical performance of Li2FeSiO4/carbon/carbon nanotubes for lithium-ion battery. J. Electrochim. Acta 55 (2010), 7362–7366, 10.1016/j.electacta.2010.07.036.
Zhang, S., Deng, C., Fu, B.L., Yang, S.Y., Ma, L., Doping effects of magnesium on the electrochemical performance of Li2FeSiO4 for lithium-ion batteries. J. Electroanal. Chem. 644 (2010), 150–154, 10.1016/j.jelechem.2009.11.035.
Jiang, X., Xu, H., Liu, J., Yang, J., Mao, H., Qian, Y., Hierarchical mesoporous Li2Mn0.5Fe0.5SiO4 and Li2Mn0.5Fe0.5SiO4/C assembled by nanoparticles or nanoplates as a cathode material for lithium-ion batteries. Nano Energy 7 (2014), 1–9, 10.1016/j.nanoen.2014.04.005.
Bai, Y., Zhang, X., Shu, H., Luo, Z., Hu, H., Zhao, Q., Wang, Y., Wang, X., Superior Na-storage properties of nickel-substituted Na2FeSiO4/C microspheres encapsulated with the in situ-synthesized alveolation-like carbon matrix. J. ACS Appl. Mater. Interfaces 12 (2020), 34858–34872, 10.1021/acsami.0c07894.
Chen, J.M., Hsu, C.H., Lin, Y.R., Hsiao, M.H., Fey, G.T.K., High-power LiFePO4 cathode materials with a continuous nano-carbon network for lithium-ion batteries. J. Power Sources 184 (2008), 498–502, 10.1016/j.jpowsour.2008.04.022.
Padhi, A.K., Nanjundaswamy, K.S., Masquelier, C., Okada, S., Goodenough, J.B., Effect of structure on the Fe3+/Fe2+ redox couplein iron phosphates. J. Electrochem. Soc. 144 (1997), 1609–1613, 10.1149/1.1837649.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.