[en] Jupiter's polar auroral region hosts UV auroral emissions that relate to the magnetospheric dynamics from the outer magnetosphere. Juno UVS has discovered intriguing features characterized by expanding emission circles of UV brightness <140 kR. These events are located at the border of the previously defined swirl region, nearby the polar dark region. The features expand into a circular shape up to ∼1,000 km in radius, at expansion velocities from 3.3 ± 1.7 up to 7.7 ± 3.5 km/s, as measured over the four best observed cases. Using color ratio measurements as a proxy for the depth of the recorded features, the mean electron energy responsible for these emissions is 80-160 keV. Events occurring in the outer magnetosphere at distances >100 RJ are likely causing for these features. Dayside magnetopause reconnection and Kelvin Helmholtz instabilities resulting from the shear flows near the magnetopause are expected to generate field aligned currents that could potentially be the cause of these features.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Hue, V.
Greathouse, T. K.
Gladstone, G. R.
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Vogt, M. F.
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Allegrini, F., Mauk, B., Clark, G., Gladstone, G. R., Hue, V., Kurth, W. S., et al. (2020). Energy flux and characteristic energy of electrons over Jupiter's main auroral emission. Journal of Geophysical Research: Space Physics, 125(4), e27693. https://doi.org/10.1029/2019JA027693
Badman, S. V., Branduardi-Raymont, G., Galand, M., Hess, S. L. G., Krupp, N., Lamy, L., et al. (2015). Auroral processes at the giant planets: Energy deposition, emission mechanisms, morphology and spectra. Space Science Reviews, 187(1–4), 99–179. https://doi.org/10.1007/s11214-014-0042-x
Bonfond, B., Gladstone, G. R., Grodent, D., Gérard, J. C., Greathouse, T. K., Hue, V., et al. (2018). Bar code events in the Juno-UVS Data: Signature ∼10 MeV electron microbursts at Jupiter. Geophysical Research Letters, 45(22), 108–112. https://doi.org/10.1029/2018GL080490
Bonfond, B., Gladstone, G. R., Grodent, D., Greathouse, T. K., Versteeg, M. H., Hue, V., et al. (2017). Morphology of the UV aurorae Jupiter during Juno's first perijove observations. Geophysical Research Letters, 44, 4463–4471. https://doi.org/10.1002/2017GL073114
Bonfond, B., Grodent, D., Badman, S. V., Gérard, J.-C., & Radioti, A. (2016). Dynamics of the flares in the active polar region of Jupiter. Geophysical Research Letters, 43(23), 11963–11970. https://doi.org/10.1002/2016GL071757
Bonfond, B., Grodent, D., Gérard, J.-C., Stallard, T., Clarke, J. T., Yoneda, M., et al. (2012). Auroral evidence of Io's control over the magnetosphere of Jupiter. Geophysical Research Letters, 39(1), L01105. https://doi.org/10.1029/2011GL050253
Bonfond, B., Vogt, M. F., Gérard, J.-C., Grodent, D., Radioti, A., & Coumans, V. (2011). Quasi-periodic polar flares at Jupiter: A signature of pulsed dayside reconnections?. Geophysical Research Letters, 38(2), L02104. https://doi.org/10.1029/2010GL045981
Bonfond, B., Yao, Z., & Grodent, D. (2020). Six pieces of evidence against the corotation enforcement theory to explain the main aurora at Jupiter. Journal of Geophysical Research: Space Physics, 125(11), e2020JA028152.
Branduardi-Raymont, G., Elsner, R. F., Galand, M., Grodent, D., Cravens, T. E., Ford, P., et al. (2008). Spectral morphology of the X-ray emission from Jupiter's aurorae. Journal of Geophysical Research, 113(A2), A02202. https://doi.org/10.1029/2007JA012600
Bunce, E. J., Cowley, S. W. H., & Yeoman, T. K. (2004). Jovian cusp processes: Implications for the polar aurora. Journal of Geophysical Research, 109(A9), A09S13. https://doi.org/10.1029/2003JA010280
Clarke, J. T., Grodent, D., Cowley, S. W. H., Bunce, E. J., Zarka, P., Connerney, J. E. P., & Satoh, T. (2004). Jupiter's Aurora. In B. Fran, E. D. Timothy, B. M. William (Eds.), Jupiter. The planet, satellites and magnetosphere. (Vol. 1, pp. 639–670).
Clark, G., Mauk, B. H., Haggerty, D., Paranicas, C., Kollmann, P., Rymer, A., et al. (2017). Energetic particle signatures of magnetic field-aligned potentials over Jupiter's polar regions. Geophysical Research Letters, 44(17), 8703–8711. https://doi.org/10.1002/2017GL074366
Clark, G., Tao, C., Mauk, B. H., Nichols, J., Saur, J., Bunce, E. J., et al. (2018). Precipitating electron energy flux and characteristic energies in Jupiter's main auroral region as measured by Juno/JEDI. Journal of Geophysical Research: Space Physics, 123(9), 7554–7567. https://doi.org/10.1029/2018JA025639
Connerney, J. E. P., Adriani, A., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., et al. (2017). Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, 356(6340), 826–832. https://doi.org/10.1126/science.aam5928
Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., et al. (2018). A new model of Jupiter's magnetic field from Juno's first nine orbits. Geophysical Research Letters, 45, 2590–2596. https://doi.org/10.1002/2018GL077312
Cowley, S. W. H., Badman, S. V., Imber, S. M., & Milan, S. E. (2008). Comment on "Jupiter: A fundamentally different magnetospheric interaction with the solar wind" by D. J. McComas and F. Bagenal. Geophysical Research Letters, 35(10), L10101. https://doi.org/10.1029/2007GL032645
Cowley, S. W. H., Bunce, E. J., Stallard, T. S., & Miller, S. (2003). Jupiter's polar ionospheric flows: Theoretical interpretation. Geophysical Research Letters, 30(5), 1220. https://doi.org/10.1029/2002GL016030
Davis, M. W., Gladstone, G. R., Greathouse, T. K., Slater, D. C., Versteeg, M. H., Persson, K. B., et al. (2011). Radiometric performance results of the Juno ultraviolet spectrograph (Juno-UVS). Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 8146. 814604. https://doi.org/10.1117/12.894274
Delamere, P. A., & Bagenal, F. (2010). Solar wind interaction with Jupiter's magnetosphere. Journal of Geophysical Research, 115(A10), A10201. https://doi.org/10.1029/2010JA015347
Delamere, P. A., Bagenal, F., Paranicas, C., Masters, A., Radioti, A., Bonfond, B., et al. (2015). Solar wind and internally driven dynamics: Influences on magnetodiscs and auroral responses. Space Science Reviews, 187(1–4), 51–97. https://doi.org/10.1007/s11214-014-0075-1
Delamere, P. A., Wilson, R. J., Eriksson, S., & Bagenal, F. (2013). Magnetic signatures of Kelvin-Helmholtz vortices on Saturn's magnetopause: Global survey. Journal of Geophysical Research: Space Physics, 118(1), 393–404. https://doi.org/10.1029/2012JA018197
Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6, 47–48. https://doi.org/10.1103/PhysRevLett.6.47
Dunn, W. R., Branduardi-Raymont, G., Ray, L. C., Jackman, C. M., Kraft, R. P., Elsner, R. F., et al. (2017). The independent pulsations of Jupiter's northern and southern X-ray auroras. Nature Astronomy, 1, 758–764. https://doi.org/10.1038/s41550-017-0262-6
Ebert, R. W., Allegrini, F., Bagenal, F., Bolton, S. J., Connerney, J. E. P., Clark, G., et al. (2017). Spatial distribution and properties of 0.1–100 keV electrons in Jupiter's polar auroral region. Geophysical Research Letters, 44(18), 9199–9207. https://doi.org/10.1002/2017GL075106
Ebert, R. W., Greathouse, T. K., Clark, G., Allegrini, F., Bagenal, F., Bolton, S. J., et al. (2019). Comparing electron energetics and UV brightness in Jupiter's northern polar region during Juno Perijove 5. Geophysical Research Letters, 46(1), 19–27. https://doi.org/10.1029/2018GL081129
Elliott, S. S., Gurnett, D. A., Kurth, W. S., Mauk, B. H., Ebert, R. W., Clark, G., et al. (2018). The acceleration of electrons to high energies over the Jovian polar cap via whistler mode wave-particle interactions. Journal of Geophysical Research: Space Physics, 123(9), 7523–7533. https://doi.org/10.1029/2018JA025797
Elliott, S. S., Gurnett, D. A., Yoon, P. H., Kurth, W. S., Mauk, B. H., Ebert, R. W., et al. (2020). The generation of upward-propagating whistler mode waves by electron beams in the Jovian polar regions. Journal of Geophysical Research: Space Physics, 125(6), e27868. https://doi.org/10.1029/2020JA027868
Gérard, J.-C., Bonfond, B., Grodent, D., Radioti, A., Clarke, J. T., Gladstone, G. R., et al. (2014). Mapping the electron energy in Jupiter's aurora: Hubble spectral observations. Journal of Geophysical Research: Space Physics, 119(11), 9072–9088. https://doi.org/10.1002/2014JA020514
Gérard, J. C., Bonfond, B., Mauk, B. H., Gladstone, G. R., Yao, Z. H., Greathouse, T. K., et al. (2019). Contemporaneous observations of Jovian energetic auroral electrons and ultraviolet emissions by the Juno spacecraft. Journal of Geophysical Research: Space Physics, 124(11), 8298–8317. https://doi.org/10.1029/2019JA026862
Gérard, J. C., Gkouvelis, L., Bonfond, B., Grodent, D., Gladstone, G. R., Hue, V., et al. (2020). Spatial distribution of the Pedersen conductance in the Jovian aurora from Juno-UVS spectral images. Journal of Geophysical Research: Space Physics, 125(8), e28142. https://doi.org/10.1029/2020JA028142
Gérard, J.-C., Gustin, J., Grodent, D., Clarke, J. T., & Grard, A. (2003). Spectral observations of transient features in the FUV Jovian polar aurora. Journal of Geophysical Research, 108(A8), 1319. https://doi.org/10.1029/2003JA009901
Gérard, J.-C., Mura, A., Bonfond, B., Gladstone, G. R., Adriani, A., Hue, V., et al. (2018). Concurrent ultraviolet and infrared observations of the north Jovian aurora during Juno's first perijove. Icarus, 312, 145–156. https://doi.org/10.1016/j.icarus.2018.04.020
Gladstone, G. R., Allen, M., & Yung, Y. L. (1996). Hydrocarbon photochemistry in the upper atmosphere of Jupiter. Icarus, 119(1), 1–52. https://doi.org/10.1006/icar.1996.0001
Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis, M. W., et al. (2017a). The ultraviolet spectrograph on NASA's Juno mission. Space Science Reviews, 213, 447–473. https://doi.org/10.1007/s11214-014-0040-z
Gladstone, G. R., Versteeg, M. H., Greathouse, T. K., Hue, V., Davis, M. W., Gérard, J.-C., et al. (2017b). Juno-UVS approach observations of Jupiter's auroras. Geophysical Research Letter, 44, 7668–7675. https://doi.org/10.1002/2017GL073377
Greathouse, T. K., Gladstone, G. R., Davis, M. W., Slater, D. C., Versteeg, M. H., Persson, K. B., et al. (2013). Performance results from in-flight commissioning of the Juno Ultraviolet Spectrograph (Juno-UVS). Proceedings of the SPIE, 8859, 88590T. https://doi.org/10.1117/12.2024537
Greathouse, T. K., Gladstone, R., Versteeg, M. H., Hue, V., Kammer, J., Davis, M. W., et al. (2017). A study of local time variations of Jupiter's ultraviolet aurora using Juno-UVS. AGU Fall Meeting Abstracts (Vol. 2017). P24A–07.
Grodent, D. (2015). A brief review of ultraviolet auroral emissions on giant planets. Space Science Reviews, 187(1–4), 23–50. https://doi.org/10.1007/s11214-014-0052-8
Grodent, D., Clarke, J. T., Waite, J. H., Cowley, S. W. H., Gérard, J. C., & Kim, J. (2003). Jupiter's polar auroral emissions. Journal of Geophysical Research, 108(A10), 1366. https://doi.org/10.1029/2003JA010017
Grodent, D., Waite, J. H., & Gérard, J.-C. (2001). A self-consistent model of the Jovian auroral thermal structure. Journal of Geophysical Research, 106(A7), 12933–12952. https://doi.org/10.1029/2000JA900129
Gurnett, D. A., & Scarf, F. L. (1983). Physics of the Jovian magnetosphere. 8. Plasma waves in the Jovian magnetosphere. (pp. 285–316). Cambridge University Press.
Gustin, J., Feldman, P. D., Gérard, J.-C., Grodent, D., Vidal-Madjar, A., Ben Jaffel, L., et al. (2004). Jovian auroral spectroscopy with FUSE: Analysis of self-absorption and implications for electron precipitation. Icarus, 171(2), 336–355. https://doi.org/10.1016/j.icarus.2004.06.005
Gustin, J., Grodent, D., Gérard, J. C., Radioti, A., Bunce, E. J., Nichols, J. D., & Clarke, J. T. (2013). Mapping of the Jovian auroral electron energy with HST/STIS observations. In European Planetary Science Congress. EPSC2013–596.
Gustin, J., Grodent, D., Ray, L. C., Bonfond, B., Bunce, E. J., Nichols, J. D., & Ozak, N. (2016). Characteristics of north Jovian aurora from STIS FUV spectral images. Icarus, 268, 215–241. https://doi.org/10.1016/j.icarus.2015.12.048
Haewsantati, K., Bonfond, B., Wannawichian, S., & Gladstone, G. R. (2020). Jupiter's polar auroral bright spots as seen by Juno-UVS. In EGU General Assembly Conference Abstracts (p. 3622). EGU General Assembly Conference Abstracts.
Hosokawa, K., Kurita, S., Miyoshi, Y., Oyama, S.-I., Ogawa, Y., Kasahara, Y., et al. (2020). Concentrically expanding ring-shaped pulsating aurora: Simultaneous observations with Arase and high-speed cameras in Scandinavia. AGU Fall Meeting Abstracts (Vol. 2020). pp. SM001–03.
Hue, V., Greathouse, T. K., Bonfond, B., Saur, J., Gladstone, G. R., Roth, L., et al. (2019b). Juno-UVS observation of the Io footprint during solar eclipse. Journal of Geophysical Research: Space Physics, 124(7), 5184–5199. https://doi.org/10.1029/2018JA026431
Hue, V., Randall Gladstone, G., Greathouse, T. K., Kammer, J. A., Davis, M. W., Bonfond, B., et al. (2019a). In-flight Characterization and Calibration of the Juno-ultraviolet Spectrograph (Juno-UVS). The Astronomical Journal, 157(2), 90. https://doi.org/10.3847/1538-3881/aafb36
Johnson, R. E., Stallard, T. S., Melin, H., Nichols, J. D., & Cowley, S. W. H. (2017). Jupiter's polar ionospheric flows: High resolution mapping of spectral intensity and line-of-sight velocity of H3+ ions. Journal of Geophysical Research: Space Physics, 122(7), 7599–7618. https://doi.org/10.1002/2017JA024176
Joy, S. P., Kivelson, M. G., Walker, R. J., Khurana, K. K., Russell, C. T., & Ogino, T. (2002). Probabilistic models of the Jovian magnetopause and bow shock locations. Journal of Geophysical Research, 107(A10), 1309. https://doi.org/10.1029/2001JA009146
Kivelson, M. G., & Southwood, D. J. (2005). Dynamical consequences of two modes of centrifugal instability in Jupiter's outer magnetosphere. Journal of Geophysical Research, 110(A12), A12209. https://doi.org/10.1029/2005JA011176
Kurth, W. S., Hospodarsky, G. B., Kirchner, D. L., Mokrzycki, B. T., Averkamp, T. F., Robison, W. T., et al. (2017). The Juno waves investigation. Space Science Reviews, 213, 347–392. https://doi.org/10.1007/s11214-017-0396-y
Li, W., Shen, X. C., Menietti, J. D., Ma, Q., Zhang, X. J., Kurth, W. S., & Hospodarsky, G. B. (2020). Global distribution of whistler mode waves in jovian inner magnetosphere. Geophysical Research Letters, 47(15), e2020GL088198. https://doi.org/10.1029/2020gl088198
Mauk, B. H., Clark, G., Gladstone, G. R., Kotsiaros, S., Adriani, A., Allegrini, F., et al. (2020). Energetic particles and acceleration regions over Jupiter's polar cap and main aurora: A broad overview. Journal of Geophysical Research: Space Physics, 125(3), e27699. https://doi.org/10.1029/2019JA027699
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., et al. (2017a). Discrete and broadband electron acceleration in Jupiter's powerful aurora. Nature, 549(7670), 66–69. https://doi.org/10.1038/nature23648
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., et al. (2017b). Juno observations of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams. Geophysical Research Letters, 44(10), 4410–4418. https://doi.org/10.1002/2016GL072286
Ma, X., Stauffer, B., Delamere, P. A., & Otto, A. (2015). Asymmetric Kelvin-Helmholtz propagation at Saturn's dayside magnetopause. Journal of Geophysical Research: Space Physics, 120(3), 1867–1875. https://doi.org/10.1002/2014JA020746
McComas, D. J., Alexander, N., Allegrini, F., Bagenal, F., Beebe, C., Clark, G., et al. (2017). The Jovian auroral distributions experiment (JADE) on the Juno mission to Jupiter. Space Science Reviews, 213(1–4), 547–643. https://doi.org/10.1007/s11214-013-9990-9
McComas, D. J., & Bagenal, F. (2007). Jupiter: A fundamentally different magnetospheric interaction with the solar wind. Geophysical Research Letters, 34(20), L20106. https://doi.org/10.1029/2007GL031078
McComas, D. J., & Bagenal, F. (2008). Reply to comment by S. W. H. Cowley et al. on “Jupiter: A fundamentally different magnetospheric interaction with the solar wind”. Geophysical Research Letters, 35(10), L10103. https://doi.org/10.1029/2008GL034351
Menietti, J. D., Groene, J. B., Averkamp, T. F., Horne, R. B., Woodfield, E. E., Shprits, Y. Y., et al. (2016). Survey of whistler mode chorus intensity at Jupiter. Journal of Geophysical Research: Space Physics, 121(10), 9758–9770. https://doi.org/10.1002/2016ja022969
Moses, J. I., Fouchet, T., Bézard, B., Gladstone, G. R., Lellouch, E., & Feuchtgruber, H. (2005). Photochemistry and diffusion in Jupiter's stratosphere: Constraints from ISO observations and comparisons with other giant planets. Journal of Geophysical Research, 110(E8), E08001. https://doi.org/10.1029/2005JE002411
Nakamura, T. K. M., Hasegawa, H., Shinohara, I., & Fujimoto, M. (2011). Evolution of an MHD-scale Kelvin-Helmholtz vortex accompanied by magnetic reconnection: Two-dimensional particle simulations. Journal of Geophysical Research, 116(A3), A03227. https://doi.org/10.1029/2010JA016046
Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., et al. (2017a). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643–7652. https://doi.org/10.1002/2017GL073029
Nichols, J. D., Bunce, E. J., Clarke, J. T., Cowley, S. W. H., Gérard, J.-C., Grodent, D., & Pryor, W. R. (2007). Response of Jupiter's UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign. Journal of Geophysical Research, 112(A2), A02203. https://doi.org/10.1029/2006JA012005
Nichols, J. D., Clarke, J. T., Gérard, J. C., & Grodent, D. (2009b). Observations of Jovian polar auroral filaments. Geophysical Research Letters, 36(8), L08101. https://doi.org/10.1029/2009GL037578
Nichols, J. D., Clarke, J. T., Gérard, J. C., Grodent, D., & Hansen, K. C. (2009a). Variation of different components of Jupiter's auroral emission. Journal of Geophysical Research, 114(A6), A06210. https://doi.org/10.1029/2009JA014051
Nichols, J. D., Yeoman, T. K., Bunce, E. J., Chowdhury, M. N., Cowley, S. W. H., & Robinson, T. R. (2017b). Periodic emission eithin Jupiter's main auroral oval. Geophysical Research Letters, 44(18), 9192–9198. https://doi.org/10.1002/2017GL074824
Ozaki, M., Shiokawa, K., Miyoshi, Y., Hosokawa, K., Oyama, S., Yagitani, S., et al. (2018). Microscopic observations of pulsating aurora associated with chorus element structures: Coordinated arase satellite-PWING observations. Geophysical Research Letters, 45(22), 12125–12134. https://doi.org/10.1029/2018GL079812
Pallier, L., & Prangé, R. (2001). More about the structure of the high latitude Jovian aurorae. Planetary and Space Science, 49(10–11), 1159–1173. https://doi.org/10.1016/S0032-0633(01)00023-X
Paranicas, C., Mauk, B. H., Haggerty, D. K., Clark, G., Kollmann, P., Rymer, A. M., et al. (2018). Intervals of intense energetic electron beams over Jupiter's poles Journal of Geophysical Research: Space Physics, 123(3), 1989–1999. https://doi.org/10.1002/2017JA025106
Parkinson, C. D., Stewart, A. I. F., Wong, A. S., Yung, Y. L., & Ajello, J. M. (2006). Enhanced transport in the polar mesosphere of Jupiter: Evidence from Cassini UVIS helium 584 Å airglow. Journal of Geophysical Research: Planets, 111(E2). https://doi.org/10.1029/2005je002539
Sinclair, J. A., Greathouse, T. K., Giles, R., Antuñano, A., Fouchet, T., Bezard, B., et al. (2019). IRTF-TEXES observations of stratospheric CH3 and CH4 emission at Jupiter's high latitudes. AGU Fall Meeting Abstracts (Vol. 2019). pp. P21G–3444.
Stallard, T. S., Miller, S., Cowley, S. W. H., & Bunce, E. J. (2003). Jupiter's polar ionospheric flows: Measured intensity and velocity variations poleward of the main auroral oval. Geophysical Research Letters, 30(5), 1221. https://doi.org/10.1029/2002GL016031
Swithenbank-Harris, B. G., Nichols, J. D., & Bunce, E. J. (2019). Jupiter's dark polar region as observed by the Hubble space telescope during the Juno approach phase. Journal of Geophysical Research (Space Physics), 124(11), 9094–9105. https://doi.org/10.1029/2019JA027306
Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Clark, G., et al. (2020). Alfvénic acceleration sustains Ganymede's footprint tail aurora. Geophysical Research Letters, 47(3), e86527. https://doi.org/10.1029/2019GL086527
Tetrick, S. S., Gurnett, D. A., Kurth, W. S., Imai, M., Hospodarsky, G. B., Bolton, S. J., et al. (2017). Plasma waves in Jupiter's high-latitude regions: Observations from the Juno spacecraft. Geophysical Research Letters, 44(10), 4447–4454. https://doi.org/10.1002/2017GL073073
Vasyliunas, V. M. (1983). Physics of the Jovian magnetosphere. 11 Plasma distribution and flow (pp. 395–453). Cambridge University Press.
Vogt, M. F., Bunce, E. J., Kivelson, M. G., Khurana, K. K., Walker, R. J., Radioti, A., et al. (2015). Magnetosphere-ionosphere mapping at Jupiter: Quantifying the effects of using different internal field models. Journal of Geophysical Research: Space Physics, 120(4), 2584–2599. https://doi.org/10.1002/2014JA020729
Vogt, M. F., Kivelson, M. G., Khurana, K. K., Walker, R. J., Bonfond, B., Grodent, D., & Radioti, A. (2011). Improved mapping of Jupiter's auroral features to magnetospheric sources. Journal of Geophysical Research: Space Physics, 116(A3), A03220. https://doi.org/10.1029/2010JA016148
Yung, Y. L., Gladstone, G. R., Chang, K. M., Ajello, J. M., & Srivastava, S. K. (1982). H2 fluorescence spectrum from 1200 to 1700 A by electron impact–Laboratory study and application to Jovian aurora. The Astrophysical Journal Letters, 254, L65–L69. https://doi.org/10.1086/183757
Zhang, B., Delamere, P. A., Yao, Z., Bonfond, B., Lin, D., Sorathia, K. A., et al. (2020). How Jupiter's unusual magnetospheric topology structures its aurora. arXiv:2006.14834.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.