Stability and Boundary Resolution Analysis of the Discontinuous Galerkin Method Applied to the Reynolds-Averaged Navier--Stokes Equations Using the Spalart--Allmaras Model
Stability and Boundary Resolution Analysis of the Discontinuous Galerkin Method Applied to the Reynolds-Averaged Navier--Stokes Equations Using the Spalart--Allmaras Model
R. Abgrall, A review of residual distribution schemes for hyperbolic and parabolic problems: The July 2010 state of the art, Comm. Comput. Phys., 11 (2012), pp. 1043-1080.
Experimental Data Base for Computer Program Assessment, Technical report, AGARD-AR-138, AGARD, Neuilly sur Sè?ne France, 1979.
D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), pp. 1749-1779.
F. Bassi and S. Rebay, Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 40 (2002), pp. 197-207.
F. Bassi and S. Rebay, Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes equations and k ? ? turbulence model equations, J. Comput. Fluids, 34 (2005), pp. 507-540.
N. Burgess and D. Mavriplis, Robust computation of turbulent flows using a discontinuous Galerkin method, in Proceedings of the 50th AIAA Aerospace Science Meeting, Nashville, TN, 2012, pp. 09-12.
B. Cockburn, An Introduction to the Discontinuous Galerkin Method for Convection-Dominated Problems, CIME, Florence, Italy, 1997.
B. Cockburn, Discontinuous Galerkin methods, Z. Angew. Math. Mech., 83 (2003), pp. 731-754.
C. Comp̀ere and J.-F. Remacle, MAdLib: An Open Source Mesh Adaptation Library, http://www.uclouvain.be/sites/madlib (16 Oct 2009).
H. Deconinck, K. Sermeus, and R. Abgrall, Status of Multidimensional Upwind Residual Distribution Schemes and Application in Aeronautics, AIAA, Reston, VA, 2000, pp. 2000-2328.
V. Dolej?ś?, On the discontinuous Galerkin method for the numerical solution of the Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 45 (2004), pp. 1083-1106.
J.A. Ekaterinaris, High-order accurate. Low diffusion methods for aerodynamics, Progress in Aerospace Sciences, 41 (2005), pp. 192-300.
R. Hartmann and P. Houston, Symmetric interior penalty DG methods for the compressible Navier-Stokes equations I: Method formulation, Int. J. Numer. Anal. Modeling, 3 (2006), pp. 1-20.
K. Hillewaert, ADIGMA -A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications: Results of a collaborative research project funded by the European Union, Notes Numer. Fluid Mech. Multidiscip. Des. 113, N. Kroll, H. Bieler, H. Deconinck, V. Couaillier, H. van der Ven, and K. Sorenson, eds., Springer, Berlin, 2010, pp. 11-24.
K. Hillewaert, J.-F. Remacle, B. Helenbrook, and P. Geuzaine, Exploiting single precision blas/lapack for the efficient implementation of the implicit discontinuous Galerkin method.
K. Hillewaert, M. Drosson, and J.-F. Remacle, Sharp constants in the hp-finite element trace inverse inequality for standard functional spaces on all element types in hybrid meshes, SIAM J. Numer. Anal., submitted.
G. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), pp. 202-228.
D.A. Knoll and D.E. Keyes, Jacobian-free Newton-Krylov methods: A survey of approaches and applications, J. Comput. Phys., 193 (2004), pp. 357-397.
N. Kroll, H. Bieler, H. Deconinck, V. Couaillier, H. van der Ven, and K. Sorenson eds., ADIGMA -A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications: Results of a collaborative research project funded by the European Union, Notes Numer. Fluid Mech. Multidiscip. Des. 113, Springer, Berlin, 2010, pp. 483-491.
K.R. Laflin, J.C. Vassberg, R.A. Wahls, J.H. Morrison, O. Brodersen, M. Rakowitz, E.N. Tinoco, and J.-L. Godard, Summary of Data from the Second AIAA CFD Drag Prediction Workshop, AIAA, 2004-0555, Reston, VA, 2004.
B. Landmann, M. Kessler, S. Wagner, and E. Kr̈amer, A parallel, high-order discontinuous Galerkin code for laminar and turbulent flows, Comput. Fluids, 37 (2007), pp. 427-438.
A. Lerat and C. Corre, A residual-based compact scheme for the compressible Navier-Stokes equations, J. Comput. Phys., 170 (2001), pp. 642-675.
D.W. Levy, T. Zickuhr, J. Vassberg, S. Agrawal, R.A. Wahls, S. Pirzadeh, and M.J. Hemsch, Data summary from the first AIAA computational fluid dynamics drag prediction workshop, J. Aircraft, 40 (2003), pp. 875-882.
X.D. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115 (1994), pp. 200-212.
N.C. Nguyen, P.-O. Persson, and J. Peraire, RANS solutions using high order discontinuous Galerkin methods, in Proceedings of the 45th AIAA Aerospace Sciences Meeting, 2007.
D. Moro, N.C. Nguyen, and J. Peraire, Navier-Stokes solution using hybridizable discontinuous Galerkin methods, in Proceedings of the 20th AIAA Computational Fluid Dynamics Conference, Honolulu, HI, 2011.
T.A. Oliver, A High-Order, Adaptive, Discontinuous Galerkin Finite Element Method for the Reynolds-Averaged Navier-Stokes Equations, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, 2008.
W.H. Reed and T.R. Hill, Triangular Mesh Methods for the Peutron Transport Equation, Technical report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.
P.-O. Persson and J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods, in 44th AIAA Aerospace Sciences Meeting, 2006.
B. Rivìere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations-Theory and Implementation, Frontiers Appl. Math., SIAM, Philadelphia, 2008.
F. Schultz-Grunow, New frictional resistance law for smooth plates, NACA TM, 17 (1941), pp. 1-24.
K. Shahbazi, An explicit expression for the penalty parameter of the interior penalty method, J. Comput. Phys., 205 (2005), pp. 401-407.
F. Shakib, T.J.R. Hughes, and Z. Johan, A new finite element formulation for computational fluid dynamics: The compressible Euler and Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 89 (1991), pp. 141-219.
P.R. Spalart, W.-H. Jou, M. Strelets, and M. Allmaras, Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach, in Proceedings of the AFOSR International Conference on DNS/LES, Greyden Press, Ruston, LA, 1997.
P.R. Spalart and S.R. Allmaras, A one-equation turbulence model for aerodynamic flows, La Recherche Áerospatiale, 1 (1994), pp. 5-21.
Z.J. Wang, High-order methods for the Euler and Navier-Stokes equations on unstructured grids, Progress in Aerospace Sciences, 43 (2007), pp. 1-41.
T. Warburton and J.S. Hesthaven, On the constants in hp-finite element trace inverse inequalities, Comput. Methods Appl. Mech. Engrg., 192 (2003), pp. 2765-2773.
K. Wieghardt and W. Tillman, On the Turbulent Friction Layer for Rising Pressure, Technical memorandum 1314, National Advisory Committee for Aeronuatics, 1951.