NOTICE: this is the author’s version of a work that was accepted for publication in Computers & Structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computers & Structures 257 (2021), 106650. DOI: 10.1016/j.compstruc.2021.106650
All documents in ORBi are protected by a user license.
Abstract :
[en] micro-mechanical model for fibre bundle failure is formulated following a phase-field approach and is embedded in a semi-analytical homogenisation scheme. In particular mesh-independence and consistency of energy release rate for fibre bundles embedded in a matrix phase are ensured for fibre dominated failure. Besides, the matrix cracking and fibre-matrix interface debonding are modelled through the evolution of the matrix damage variable framed in an implicit non-local form. Considering the material parameters of both fibre and epoxy matrix phases identified from manufacturer data sheets, it is shown that the failure strength of a ply loaded along the longitudinal direction is in agreement with the reported values. Finally, the multi-damage
homogenisation framework is applied to model, on the one hand, the failure of a notched laminate, in which case the failure modes are observed to be in good agreement with experiments, and, on the other hand, the failure of yarns in a plain woven composite unit-cell under uni-axial tension
Name of the research project :
The research has been funded by the Walloon Region under the agreement no.7911-VISCOS in the context of the 21st SKYWIN call.
Scopus citations®
without self-citations
1