Per-phase spatial correlated damage models of UD fibre reinforced composites using mean-field homogenisation; applications to notched laminate failure and yarn failure
NOTICE: this is the author’s version of a work that was accepted for publication in Computers & Structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computers & Structures 257 (2021), 106650. DOI: 10.1016/j.compstruc.2021.106650
All documents in ORBi are protected by a user license.
[en] micro-mechanical model for fibre bundle failure is formulated following a phase-field approach and is embedded in a semi-analytical homogenisation scheme. In particular mesh-independence and consistency of energy release rate for fibre bundles embedded in a matrix phase are ensured for fibre dominated failure. Besides, the matrix cracking and fibre-matrix interface debonding are modelled through the evolution of the matrix damage variable framed in an implicit non-local form. Considering the material parameters of both fibre and epoxy matrix phases identified from manufacturer data sheets, it is shown that the failure strength of a ply loaded along the longitudinal direction is in agreement with the reported values. Finally, the multi-damage
homogenisation framework is applied to model, on the one hand, the failure of a notched laminate, in which case the failure modes are observed to be in good agreement with experiments, and, on the other hand, the failure of yarns in a plain woven composite unit-cell under uni-axial tension
Wu, Ling ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Zhang, Tianyu ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Maillard, Etienne; SONACA SA
Adam, Laurent; MSC Software Belgium SA
Martiny, Philippe; MSC Software Belgium SA
Noels, Ludovic ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
Per-phase spatial correlated damage models of UD fibre reinforced composites using mean-field homogenisation; applications to notched laminate failure and yarn failure
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
van den Heuvel, P., Peijs, T., Young, R., Failure phenomena in two-dimensional multifibre microcomposites: 3. A Raman spectroscopic study of the influence of inter-facial debonding on stress concentrations. Compos Sci Technol 58 (1998), 933–944.
van den Heuvel, P., Goutianos, S., Young, R., Peijs, T., Failure phenomena in fibre-reinforced composites. part 6: a finite element study of stress concentrations in unidirectional carbon fibre-reinforced epoxy composites. Compos Sci Technol 64:5 (2004), 645–656, 10.1016/j.compscitech.2003.06.003 http://www.sciencedirect.com/science/article/pii/S0266353803003099.
Scott, A., Mavrogordato, M., Wright, P., Sinclair, I., Spearing, S., In situ fibre fracture measurement in carbon–epoxy laminates using high resolution computed tomography. Compos Sci Technol 71:12 (2011), 1471–1477, 10.1016/j.compscitech.2011.06.004.
Arteiro, A., Catalanotti, G., Melro, A., Linde, P., Camanho, P., Micro-mechanical analysis of the in situ effect in polymer composite laminates. Compos Struct 116 (2014), 827–840, 10.1016/j.compstruct.2014.06.014 URL http://www.sciencedirect.com/science/article/pii/S0263822314002839.
Vigueras, G., Sket, F., Samaniego, C., Wu, L., Noels, L., Tjahjanto, D., Casoni, E., Houzeaux, G., Makradi, A., Molina-Aldareguia, J.M., Vázquez, M., Jérusalem, A., An xfem/czm implementation for massively parallel simulations of composites fracture. Compos Struct 125 (2015), 542–557, 10.1016/j.compstruct.2015.01.053 URL http://www.sciencedirect.com/science/article/pii/S0263822315001063.
Wu, L., Tjahjanto, D., Becker, G., Makradi, A., Jérusalem, A., Noels, L., A micro–meso-model of intra-laminar fracture in fiber-reinforced composites based on a discontinuous galerkin/cohesive zone method. Eng Fract Mech 104 (2013), 162–183, 10.1016/j.engfracmech.2013.03.018 URL http://www.sciencedirect.com/science/article/pii/S0013794413001252.
Guerrero, J., Mayugo, J., Costa, J., Turon, A., A 3d progressive failure model for predicting pseudo-ductility in hybrid unidirectional composite materials under fibre tensile loading. Compos Part A: Appl Sci Manuf 107 (2018), 579–591, 10.1016/j.compositesa.2018.02.005.
Okabe, T., Sekine, H., Ishii, K., Nishikawa, M., Takeda, N., Numerical method for failure simulation of unidirectional fiber-reinforced composites with spring element model. Compos Sci Technol 65:6 (2005), 921–933, 10.1016/j.compscitech.2004.10.030.
Tavares, R.P., Otero, F., Turon, A., Camanho, P.P., Effective simulation of the mechanics of longitudinal tensile failure of unidirectional polymer composites. Int J Fract 208:1 (2017), 269–285.
Tavares, R.P., Otero, F., Baiges, J., Turon, A., Camanho, P.P., A dynamic spring element model for the prediction of longitudinal failure of polymer composites. Comput Mater Sci 160 (2019), 42–52, 10.1016/j.commatsci.2018.12.048.
van der Meer, F.P., Sluys, L.J., Hallett, S.R., Wisnom, M.R., Computational modeling of complex failure mechanisms in laminates. J Compos Mater 46:5 (2012), 603–623.
Reinoso, J., Catalanotti, G., Blázquez, A., Areias, P., Camanho, P., París, F., A consistent anisotropic damage model for laminated fiber-reinforced composites using the 3d-version of the puck failure criterion. Int J Solids Struct 126–127 (2017), 37–53, 10.1016/j.ijsolstr.2017.07.023 URL http://www.sciencedirect.com/science/article/pii/S0020768317303396.
Tavares, R.P., Melro, A.R., Bessa, M.A., Turon, A., Liu, W.K., Camanho, P.P., Mechanics of hybrid polymer composites: analytical and computational study. Comput Mech 57:3 (2016), 405–421.
Wu, L., Sket, F., Molina-Aldareguia, J., Makradi, A., Adam, L., Doghri, I., Noels, L., A study of composite laminates failure using an anisotropic gradient-enhanced damage mean-field homogenization model. Compos Struct 126 (2015), 246–264, 10.1016/j.compstruct.2015.02.070.
van der Meer, F., Sluys, L., Continuum models for the analysis of progressive failure in composite laminates. J Compos Mater 43:20 (2009), 2131–2156, 10.1177/0021998309343054.
Miehe, C., Hofacker, M., Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:45–48 (2010), 2765–2778, 10.1016/j.cma.2010.04.011.
Nguyen, T.-T., Waldmann, D., Bui, T.Q., Role of interfacial transition zone in phase field modeling of fracture in layered heterogeneous structures. J Comput Phys 386 (2019), 585–610, 10.1016/j.jcp.2019.02.022 URL https://www.sciencedirect.com/science/article/pii/S0021999119301391.
Zhang, P., Yao, W., Hu, X., Bui, T.Q., 3d micromechanical progressive failure simulation for fiber-reinforced composites. Compos Struct, 249, 2020, 112534, 10.1016/j.compstruct.2020.112534 URL https://www.sciencedirect.com/science/article/pii/S0263822319348421.
Dean, A., Asur Vijaya Kumar, P., Reinoso, J., Gerendt, C., Paggi, M., Mahdi, E., et al. A multi phase-field fracture model for long fiber reinforced composites based on the puck theory of failure. Compos Struct, 251, 2020, 112446, 10.1016/j.compstruct.2020.112446 http://www.sciencedirect.com/science/article/pii/S0263822320307078.
Zhang, P., Hu, X., Bui, T.Q., Yao, W., Phase field modeling of fracture in fiber reinforced composite laminate. Int J Mech Sci, 161–162, 2019, 105008, 10.1016/j.ijmecsci.2019.07.007 URL https://www.sciencedirect.com/science/article/pii/S0020740318341729.
Zhang, P., Yao, W., Hu, X., Bui, T.Q., An explicit phase field model for progressive tensile failure of composites. Eng Fract Mech, 241, 2021, 107371, 10.1016/j.engfracmech.2020.107371 URL https://www.sciencedirect.com/science/article/pii/S0013794420309516.
Bui, T.Q., Hu, X., A review of phase-field models, fundamentals and their applications to composite laminates. Eng Fract Mech, 248, 2021, 107705, 10.1016/j.engfracmech.2021.107705.
Hill, R., Continuum micro-mechanics of elastoplastic polycrystals. J Mech Phys Solids 13:2 (1965), 89–101, 10.1016/0022-5096(65)90023-2.
Talbot, D.R.S., Willis, J.R., Variational principles for inhomogeneous non-linear media. IMA J Appl Math 35:1 (1985), 39–54, 10.1093/imamat/35.1.39.
Pettermann, H.E., Plankensteiner, A.F., Böhm, H.J., Rammerstorfer, F.G., A thermo-elasto-plastic constitutive law for inhomogeneous materials based on an incremental Mori-Tanaka approach. Comput Struct 71:2 (1999), 197–214, 10.1016/S0045-7949(98)00208-9.
Doghri, I., Brassart, L., Adam, L., Gérard, J.S., A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites. Int J Plast 27:3 (2011), 352–371.
Wu, L., Noels, L., Adam, L., Doghri, I., A combined incremental-secant mean-field homogenization scheme with per-phase residual strains for elasto-plastic composites. Int J Plast 51 (2013), 80–102, 10.1016/j.ijplas.2013.06.006 URL http://www.sciencedirect.com/science/article/pii/S0749641913001174.
Molinari, A., Canova, G., Ahzi, S., A self consistent approach of the large deformation polycrystal viscoplasticity. Acta Metall 35:12 (1987), 2983–2994.
Pierard, O., Doghri, I., An enhanced affine formulation and the corresponding numerical algorithms for the mean-field homogenization of elasto-viscoplastic composites. Int J Plast 22:1 (2006), 131–157, 10.1016/j.ijplas.2005.04.001.
Mercier, S., Molinari, A., Homogenization of elastic–viscoplastic heterogeneous materials: Self-consistent and Mori-Tanaka schemes. Int J Plast 25:6 (2009), 1024–1048, 10.1016/j.ijplas.2008.08.006.
Wu, L., Adam, L., Doghri, I., Noels, L., An incremental-secant mean-field homogenization method with second statistical moments for elasto-visco-plastic composite materials. Mech Mater 114 (2017), 180–200, 10.1016/j.mechmat.2017.08.006 URL http://www.sciencedirect.com/science/article/pii/S0167663617300698.
Peerlings, R., de Borst, R., Brekelmans, W., Ayyapureddi, S., Gradient-enhanced damage for quasi-brittle materials. Int J Numer Meth Eng 39 (1996), 3391–3403.
Beyerlein, I.J., Phoenix, S.L., Statistics for the strength and size effects of microcomposites with four carbon fibers in epoxy resin. Compos Sci Technol 56:1 (1996), 75–92, 10.1016/0266-3538(95)00131-X URL http://www.sciencedirect.com/science/article/pii/026635389500131X.
Wu, L., Maillard, E., Noels, L., Tensile failure model of carbon fibre in unidirectionally reinforced epoxy composites with mean-field homogenisation. Compos Struct, 273, 2021, 114270, 10.1016/j.compstruct.2021.114270 https://www.sciencedirect.com/science/article/pii/S0263822321007327?via%3Dihub.
Hobbiebrunken, T., Hojo, M., Adachi, T., Jong, C.D., Fiedler, B., Evaluation of interfacial strength in cf/epoxies using fem and in-situ experiments. Compos Part A: Appl Sci Manuf 37:12 (2006), 2248–2256, 10.1016/j.compositesa.2005.12.021 the 11th US–Japan Conference on Composite Materials. http://www.sciencedirect.com/science/article/pii/S1359835X06000066.
Nguyen, V.-D., Wu, L., Noels, L., A micro-mechanical model of reinforced polymer failure with length scale effects and predictive capabilities. validation on carbon fiber reinforced high-crosslinked rtm6 epoxy resin. Mech Mater 133 (2019), 193–213, 10.1016/j.mechmat.2019.02.017.
Cox, H.L., The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3:3 (1952), 72–79, 10.1088/0508-3443/3/3/302.
Peerlings, R., de Borst, R., Brekelmans, W., Geers, M., Gradient-enhanced damage modelling of concrete fracture. Mech Cohesive-Frict Mat 3 (1998), 323–342.
Peerlings, R., Geers, M., de Borst, R., Brekelmans, W., A critical comparison of nonlocal and gradient-enhanced softening continua. Int J Solids Struct 38 (2001), 7723–7746.
Lemaitre, J., Coupled elasto-plasticity and damage constitutive equations. Comput Methods Appl Mech Eng 51:1–3 (1985), 31–49, 10.1016/0045-7825(85)90026-X.
Doghri, I., Numerical implementation and analysis of a class of metal plasticity models coupled with ductile damage. Int J Numer Meth Eng 38:20 (1995), 3403–3431, 10.1002/nme.1620382004.
Lemaitre, J., Desmorat, R., Engineering damage mechanics: ductile, creep, fatigue and brittle failures. 2005, Springer-Verlag, Berlin.
Wu, L., Noels, L., Adam, L., Doghri, I., An implicit-gradient-enhanced incremental-secant mean-field homogenization scheme for elasto-plastic composites with damage. Int J Solids Struct 50:24 (2013), 3843–3860.
Eshelby, J.D., The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc Roy Soc Lond Ser A Math Phys Sci 241:1226 (1957), 376–396.
Segurado, J., Llorca, J., A numerical approximation to the elastic properties of sphere-reinforced composites. J Mech Phys Solids 50:10 (2002), 2107–2121.
Mori, T., Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:5 (1973), 571–574 cited By (since 1996) 1814.
Talbot, D.R.S., Willis, J.R., Bounds and self-consistent estimates for the overall properties of nonlinear composites. IMA J Appl Math 39:3 (1987), 215–240, 10.1093/imamat/39.3.215.
Ponte Castañeda, P., The effective mechanical properties of nonlinear isotropic composites. J Mech Phys Solids 39:1 (1991), 45–71, 10.1016/0022-5096(91)90030-R.
Ponte Castañeda, P., A new variational principle and its application to nonlinear heterogeneous systems. SIAM J Appl Math 52:5 (1992), 1321–1341.
Talbot, D., Willis, J., Some simple explicit bounds for the overall behaviour of nonlinear composites. Int J Solids Struct 29:14–15 (1992), 1981–1987, 10.1016/0020-7683(92)90188-Y.
Doghri, I., Ouaar, A., Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms. Int J Solids Struct 40:7 (2003), 1681–1712, 10.1016/S0020-7683(03)00013-1.
Molinari, A., El Houdaigui, F., Tóth, L., Validation of the tangent formulation for the solution of the non-linear eshelby inclusion problem. Int J Plast 20:2 (2004), 291–307, 10.1016/S0749-6419(03)00038-X.
Doghri, I., Adam, L., Bilger, N., Mean-field homogenization of elasto-viscoplastic composites based on a general incrementally affine linearization method. Int J Plast 26:2 (2010), 219–238, 10.1016/j.ijplas.2009.06.003.
Herráez, M., Fernández, A., Lopes, C.S., González, C., Strength and toughness of structural fibres for composite material reinforcement. Philos Trans A Math Phys Eng Sci 374:2071 (2016), 1–11, 10.1098/rsta.2015.0274.
Pinho, S., Robinson, P., Iannucci, L., Fracture toughness of the tensile and compressive fibre failure modes in laminated composites. Compos Sci Technol 66:13 (2006), 2069–2079, 10.1016/j.compscitech.2005.12.023 URL http://www.sciencedirect.com/science/article/pii/S026635380600011X.
Catalanotti, G., Arteiro, A., Hayati, M., Camanho, P., Determination of the mode i crack resistance curve of polymer composites using the size-effect law. Eng Fract Mech 118 (2014), 49–65, 10.1016/j.engfracmech.2013.10.021 URL https://www.sciencedirect.com/science/article/pii/S0013794413003640.
Hexcel Corporation, HexTow AS4, Carbon Fiber, Product Data Sheet (2018).
Naya, F., González, C., Lopes, C., Van der Veen, S., Pons, F., Computational micromechanics of the transverse and shear behavior of unidirectional fiber reinforced polymers including environmental effects. Compos Part A: Appl Sci Manuf 92 (2017), 146–157, 10.1016/j.compositesa.2016.06.018 URL https://www.sciencedirect.com/science/article/pii/S1359835X1630197X.
Wu, L., Adam, L., Noels, L., Micro-mechanics and data-driven based reduced order models for multi-scale analyses of woven composites. Compos Struct, 270, 2021, 114058, 10.1016/j.compstruct.2021.114058 URL https://www.sciencedirect.com/science/article/pii/S0263822321005183.
Hou, J., Ruiz, C., Measurement of the properties of woven cfrp t300/914 at different strain rates. Compos Sci Technol 60:15 (2000), 2829–2834, 10.1016/S0266-3538(00)00151-2 URL http://www.sciencedirect.com/science/article/pii/S0266353800001512.
Sun, H., Pan, N., Postle, R., On the poisson's ratios of a woven fabric. Compos Struct 68:4 (2005), 505–510, 10.1016/j.compstruct.2004.05.017 URL http://www.sciencedirect.com/science/article/pii/S0263822304001898.
Bao, L., Takatera, M., Shinohara, A., Error evaluation on measuring the apparent poisson's ratios of textile fabrics by uniaxial tensile test. Sen'i Gakkaishi 53:1 (1997), 20–26, 10.2115/fiber.53.20.
Doghri, I., Mechanics of Deformable Solids- Linear, Nonlinear, Analytical and Computational Aspects. 2000, Springer-Verlag, Berlin.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.