[en] The human T-lymphotropic virus type 1 (HTLV-1) is efficiently transmitted through cellular contacts. While the molecular mechanisms of viral cell-to-cell propagation have been extensively studied in vitro, those facilitating the encounter between infected and target cells remain unknown. In this study, we demonstrate that HTLV-1-infected CD4 T cells secrete a potent chemoattractant, leukotriene B4 (LTB4). LTB4 secretion is dependent on Tax-induced transactivation of the pla2g4c gene, which encodes the cytosolic phospholipase A2 gamma. Inhibition of LTB4 secretion or LTB4 receptor knockdown on target cells reduces T-cell recruitment, cellular contact formation and virus propagation in vitro. Finally, blocking the synthesis of LTB4 in a humanized mouse model of HTLV-1 infection significantly reduces proviral load. This results from a decrease in the number of infected clones while their expansion is not impaired. This study shows the critical role of LTB4 secretion in HTLV-1 transmission both in vitro and in vivo.
Disciplines :
Microbiology
Author, co-author :
Percher, Florent; Institut Pasteur (Paris) > Department de Virologie
Curis, Céline; Institut Pasteur (Paris) > Department de Virologie
Peres, Eléonore; ENS de Lyon > Laboratoire de Biologie et Mode ́lisation de la Cellule
Artesi, Maria ; Université de Liège - ULiège > Unit of Animal Genomics > GIGA-Research
Rosewick, Nicolas; Université de Liège - ULiège > Unit of animal Genomics > GIGA-Research
Jeannin, Patricia; Institut Pasteur (Paris) > Department de Virologie
Gessain, Antoine; Institut Pasteur (Paris) > Department de Virologie
Gout, Olivier; Fondation Ophtalmologique Adolphe de Rothschild, Paris F-75019, France > Service de Neurologie
Mahieux, Renaud; ENS de Lyon > Equipe Oncogènese Rétrovirale
Ceccaldi, Pierre-Emmanuel; Institut Pasteur (Paris) > Department de Virologie
Van den Broeke, Anne; Université de Liège - ULiège > Unit of Animal Genomics > GIGA-Research
Duc Dodon, Madeleine; ENS de Lyon > Laboratoire de Biologie et Mode ́lisation de la Cellule
Afonso, Philippe V.; Institut Pasteur (Paris) > Department de Virologie
Gessain, A. & Cassar, O. Epidemiological aspects and world distribution of HTLV-1 infection. Front. Microbiol. 3, 388 (2012).
Lairmore, M. D., Haines, R. & Anupam, R. Mechanisms of human T-lymphotropic virus type 1 transmission and disease. Curr. Opin. Virol. 2, 474-481 (2012).
Olindo, S. et al. Natural history of human T-lymphotropic virus 1-associated myelopathy: a 14-year follow-up study. Arch. Neurol. 63, 1560-1566 (2006).
Nagai, M. et al. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J. Neurovirol. 4, 586-593 (1998).
Demontis, M. A., Sadiq, M. T., Golz, S. & Taylor, G. P. HTLV-1 viral RNA is detected rarely in plasma of HTLV-1 infected subjects. J. Med. Virol. 87, 2130-2134 (2015).
Fan, N. et al. Infection of peripheral blood mononuclear cells and cell lines by cell-free human T-cell lymphoma/leukemia virus type I. J. Clin. Microbiol. 30, 905-910 (1992).
Okochi, K. & Sato, H. Transmission of adult T-cell leukemia virus (HTLV-I) through blood transfusion and its prevention. AIDS Res. 2(Suppl 1): S157-S161 (1986).
Sobata, R. et al. Estimation of the infectious viral load required for transfusion-transmitted human T-lymphotropic virus type 1 infection (TT-HTLV-1) and of the effectiveness of leukocyte reduction in preventing TT-HTLV-1. Vox Sang. 109, 122-128 (2015).
Hewitt, P. E., Davison, K., Howell, D. R. & Taylor, G. P. Human T-lymphotropic virus lookback in NHS Blood and Transplant (England) reveals the efficacy of leukoreduction. Transfusion 53, 2168-2175 (2013).
Jones, K. S., Petrow-Sadowski, C., Huang, Y. K., Bertolette, D. C. & Ruscetti, F. W. Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells. Nat. Med. 14, 429-436 (2008).
Alais, S., Mahieux, R. & Dutartre, H. Viral source-independent high susceptibility of dendritic cells to human T-cell leukemia virus type 1 infection compared to that of T lymphocytes. J. Virol. 89, 10580-10590 (2015).
Igakura, T. et al. Spread of HTLV-1 between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299, 1713-1716 (2003).
Pais-Correia, A. M. et al. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat. Med. 16, 83-89 (2010).
Van Prooyen, N. et al. Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission. Proc. Natl Acad. Sci. USA 107, 20738-20743 (2010).
Gross, C. & Thoma-Kress, A. K. Molecular mechanisms of HTLV-1 cell-to-cell transmission. Viruses 8, 74 (2016).
Chevalier, S. A. et al. Gem-induced cytoskeleton remodeling increases cellular migration of HTLV-1-infected cells, formation of infected-to-target T-cell conjugates and viral transmission. PLoS Pathog. 10, e1003917 (2014).
Giraudon, P. et al. Insight into the role of CRMP2 (collapsin response mediator protein 2) in T lymphocyte migration: the particular context of virus infection. Cell Adh. Migr. 7, 38-43 (2013).
Varrin-Doyer, M. et al. Human T lymphotropic virus type 1 increases T lymphocyte migration by recruiting the cytoskeleton organizer CRMP2. J. Immunol. 188, 1222-1233 (2012).
Saggioro, D. et al. Chemoattractant(s) in culture supernatants of HTLV-IInfected T-cell lines. AIDS Res. Hum. Retroviruses 7, 571-577 (1991).
Trindade, B. C. et al. Leukotrienes are upregulated and associated with human T-lymphotropic virus type 1 (HTLV-1)-associated neuroinflammatory disease. PLoS ONE 7, e51873 (2012).
Le Bel, M., Brunet, A. & Gosselin, J. Leukotriene B4, an endogenous stimulator of the innate immune response against pathogens. J. Innate Immun. 6, 159-168 (2014).
Canetti, C. A. et al. IL-18 enhances collagen-induced arthritis by recruiting neutrophils via TNF-alpha and leukotriene B4. J. Immunol. 171, 1009-1015 (2003).
Grespan, R. et al. CXCR2-specific chemokines mediate leukotriene B4-dependent recruitment of neutrophils to inflamed joints in mice with antigen-induced arthritis. Arthritis Rheum. 58, 2030-2040 (2008).
Lammermann, T. et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498, 371-375 (2013).
Afonso, P. V. et al. LTB4 is a signal-relay molecule during neutrophil chemotaxis. Dev. Cell 22, 1079-1091 (2012).
Peters-Golden, M. & Henderson, Jr W. R. Leukotrienes. N. Engl. J. Med. 357, 1841-1854 (2007).
Yokomizo, T. Leukotriene B4 receptors: novel roles in immunological regulations. Adv. Enzyme Regul. 51, 59-64 (2011).
Lewis, R. A. & Austen, K. F. The biologically active leukotrienes. Biosynthesis, metabolism, receptors, functions, and pharmacology. J. Clin. Invest. 73, 889-897 (1984).
Odlander, B. et al. Formation and effects of leukotriene B4 in human lymphocytes. Int. J. Tissue React. 11, 277-289 (1989).
Odlander, B., Jakobsson, P. J., Rosen, A. & Claesson, H. E. Human B and T lymphocytes convert leukotriene A4 into leukotriene B4. Biochem. Biophys. Res. Commun. 153, 203-208 (1988).
Fu, J. Y., Medina, J. F., Funk, C. D., Wetterholm, A. & Radmark, O. Leukotriene A4, conversion to leukotriene B4 in human T-cell lines. Prostaglandins 36, 241-248 (1988).
Cook-Moreau, J. M. et al. Expression of 5-lipoxygenase (5-LOX) in T lymphocytes. Immunology 122, 157-166 (2007).
Kudo, I. & Murakami, M. Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat. 68-69, 3-58 (2002).
Dennis, E. A., Cao, J., Hsu, Y. H., Magrioti, V. & Kokotos, G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem. Rev. 111, 6130-6185 (2011).
Poubelle, P. E., Borgeat, P. & Rola-Pleszczynski, M. Assessment of leukotriene B4 synthesis in human lymphocytes by using high performance liquid chromatography and radioimmunoassay methods. J. Immunol. 139, 1273-1277 (1987).
Ghosh, M., Tucker, D. E., Burchett, S. A. & Leslie, C. C. Properties of the Group IV phospholipase A2 family. Prog. Lipid Res. 45, 487-510 (2006).
Smith, M. R. & Greene, W. C. Identification of HTLV-I tax trans-activator mutants exhibiting novel transcriptional phenotypes. Genes Dev. 4, 1875-1885 (1990).
Bickford, J. S. et al. Induction of group IVC phospholipase A2 in allergic asthma: transcriptional regulation by TNFalpha in bronchoepithelial cells. Biochem. J. 442, 127-137 (2012).
Villaudy, J. et al. HTLV-1 propels thymic human T cell development in 'human immune system' Rag2-/- gamma c-/- mice. PLoS Pathog. 7, e1002231 (2011).
Rosewick, N. et al. Cis-perturbation of cancer drivers by the HTLV-1/BLV proviruses is an early determinant of leukemogenesis. Nat. Commun. 8, 15264 (2017).
Pique, C. & Jones, K. S. Pathways of cell-cell transmission of HTLV-1. Front. Microbiol. 3, 378 (2012).
Guerreiro, J. B. et al. Spontaneous neutrophil activation in HTLV-1 infected patients. Braz. J. Infect. Dis. 9, 510-514 (2005).
Lavorgna, A., Matsuoka, M. & Harhaj, E. W. A critical role for IL-17RB signaling in HTLV-1 tax-induced NF-kappaB activation and T-cell transformation. PLoS Pathog. 10, e1004418 (2014).
Tattermusch, S. et al. Systems biology approaches reveal a specific interferon-inducible signature in HTLV-1 associated myelopathy. PLoS Pathog. 8, e1002480 (2012).
Hieshima, K. et al. Tax-inducible production of CC chemokine ligand 22 by human T cell leukemia virus type 1 (HTLV-1)-infected T cells promotes preferential transmission of HTLV-1 to CCR4-expressing CD4+ T cells. J. Immunol. 180, 931-939 (2008).
Sugata, K. et al. HTLV-1 viral factor HBZ induces CCR4 to promote T-cell migration and proliferation. Cancer Res. 76, 5068-5079 (2016).
Peres, E. et al. From immunodeficiency to humanization: the contribution of mouse models to explore HTLV-1 leukemogenesis. Viruses 7, 6371-6386 (2015).
Gillet, N. A. et al. The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones. Blood 117, 3113-3122 (2011).
Deltas, G. The small-sample bias of the gini coefficient: results and implications for empirical research. Rev. Econ. Stat. 85, 226-234 (2003).
Wattel, E., Cavrois, M., Gessain, A. & Wain-Hobson, S. Clonal expansion of infected cells: a way of life for HTLV-I. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 13(Suppl 1): S92-S99 (1996).
Fox, J. M. et al. Long terminal repeat circular DNA as markers of active viral replication of human T lymphotropic virus-1 in vivo. Viruses 8, 80 (2016).
Cook, L. B. et al. Rapid dissemination of human T-lymphotropic virus type 1 during primary infection in transplant recipients. Retrovirology 13, 3 (2016).
Kitamura, K. et al. Unintegrated two-long terminal repeat circular human T lymphotropic virus DNA accumulation during chronic HTLV infection. AIDS Res. Hum. Retroviruses 9, 1167-1172 (1993).
Shimizu, T., Ohto, T. & Kita, Y. Cytosolic phospholipase A2: biochemical properties and physiological roles. IUBMB Life 58, 328-333 (2006).
Movahedi Naini, S., Sheridan, A. M., Force, T., Shah, J. V. & Bonventre, J. V. Group IVA cytosolic phospholipase A2 regulates the G2-to-M transition by modulating the activity of tumor suppressor SIRT2. Mol. Cell. Biol. 35, 3768-3784 (2015).
Levy, R. The role of cytosolic phospholipase A2-alfa in regulation of phagocytic functions. Biochim. Biophys. Acta 1761, 1323-1334 (2006).
Moriuchi, M., Inoue, H. & Moriuchi, H. Reciprocal interactions between human T-lymphotropic virus type 1 and prostaglandins: implications for viral transmission. J. Virol. 75, 192-198 (2001).
Mori, N., Inoue, H., Yoshida, T., Tanabe, T. & Yamamoto, N. Constitutive expression of the cyclooxygenase-2 gene in T-cell lines infected with human T cell leukemia virus type I. Int. J. Cancer 94, 813-819 (2001).
Gabet, A. S. et al. High circulating proviral load with oligoclonal expansion of HTLV-1 bearing T cells in HTLV-1 carriers with strongyloidiasis. Oncogene 19, 4954-4960 (2000).
Chevalier, S. A. et al. The transcription profile of Tax-3 is more similar to Tax-1 than Tax-2: insights into HTLV-3 potential leukemogenic properties. PLoS ONE 7, e41003 (2012).
Rubio, J. M. et al. Group V secreted phospholipase A2 is upregulated by IL-4 in human macrophages and mediates phagocytosis via hydrolysis of ethanolamine phospholipids. J. Immunol. 194, 3327-3339 (2015).