[en] The human T-lymphotropic virus type 1 (HTLV-1) is efficiently transmitted through cellular contacts. While the molecular mechanisms of viral cell-to-cell propagation have been extensively studied in vitro, those facilitating the encounter between infected and target cells remain unknown. In this study, we demonstrate that HTLV-1-infected CD4 T cells secrete a potent chemoattractant, leukotriene B4 (LTB4). LTB4 secretion is dependent on Tax-induced transactivation of the pla2g4c gene, which encodes the cytosolic phospholipase A2 gamma. Inhibition of LTB4 secretion or LTB4 receptor knockdown on target cells reduces T-cell recruitment, cellular contact formation and virus propagation in vitro. Finally, blocking the synthesis of LTB4 in a humanized mouse model of HTLV-1 infection significantly reduces proviral load. This results from a decrease in the number of infected clones while their expansion is not impaired. This study shows the critical role of LTB4 secretion in HTLV-1 transmission both in vitro and in vivo.
Disciplines :
Microbiology
Author, co-author :
Percher, Florent; Institut Pasteur (Paris) > Department de Virologie
Curis, Céline; Institut Pasteur (Paris) > Department de Virologie
Peres, Eléonore; ENS de Lyon > Laboratoire de Biologie et Mode ́lisation de la Cellule
Artesi, Maria ; Université de Liège - ULiège > Unit of Animal Genomics > GIGA-Research
Rosewick, Nicolas; Université de Liège - ULiège > Unit of animal Genomics > GIGA-Research
Jeannin, Patricia; Institut Pasteur (Paris) > Department de Virologie
Gessain, Antoine; Institut Pasteur (Paris) > Department de Virologie
Gout, Olivier; Fondation Ophtalmologique Adolphe de Rothschild, Paris F-75019, France > Service de Neurologie
Mahieux, Renaud; ENS de Lyon > Equipe Oncogènese Rétrovirale
Ceccaldi, Pierre-Emmanuel; Institut Pasteur (Paris) > Department de Virologie
Van den Broeke, Anne; Université de Liège - ULiège > Unit of Animal Genomics > GIGA-Research
Duc Dodon, Madeleine; ENS de Lyon > Laboratoire de Biologie et Mode ́lisation de la Cellule
Afonso, Philippe V.; Institut Pasteur (Paris) > Department de Virologie
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Gessain, A. & Cassar, O. Epidemiological aspects and world distribution of HTLV-1 infection. Front. Microbiol. 3, 388 (2012).
Lairmore, M. D., Haines, R. & Anupam, R. Mechanisms of human T-lymphotropic virus type 1 transmission and disease. Curr. Opin. Virol. 2, 474-481 (2012).
Olindo, S. et al. Natural history of human T-lymphotropic virus 1-associated myelopathy: a 14-year follow-up study. Arch. Neurol. 63, 1560-1566 (2006).
Nagai, M. et al. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J. Neurovirol. 4, 586-593 (1998).
Demontis, M. A., Sadiq, M. T., Golz, S. & Taylor, G. P. HTLV-1 viral RNA is detected rarely in plasma of HTLV-1 infected subjects. J. Med. Virol. 87, 2130-2134 (2015).
Fan, N. et al. Infection of peripheral blood mononuclear cells and cell lines by cell-free human T-cell lymphoma/leukemia virus type I. J. Clin. Microbiol. 30, 905-910 (1992).
Okochi, K. & Sato, H. Transmission of adult T-cell leukemia virus (HTLV-I) through blood transfusion and its prevention. AIDS Res. 2(Suppl 1): S157-S161 (1986).
Sobata, R. et al. Estimation of the infectious viral load required for transfusion-transmitted human T-lymphotropic virus type 1 infection (TT-HTLV-1) and of the effectiveness of leukocyte reduction in preventing TT-HTLV-1. Vox Sang. 109, 122-128 (2015).
Hewitt, P. E., Davison, K., Howell, D. R. & Taylor, G. P. Human T-lymphotropic virus lookback in NHS Blood and Transplant (England) reveals the efficacy of leukoreduction. Transfusion 53, 2168-2175 (2013).
Jones, K. S., Petrow-Sadowski, C., Huang, Y. K., Bertolette, D. C. & Ruscetti, F. W. Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells. Nat. Med. 14, 429-436 (2008).
Alais, S., Mahieux, R. & Dutartre, H. Viral source-independent high susceptibility of dendritic cells to human T-cell leukemia virus type 1 infection compared to that of T lymphocytes. J. Virol. 89, 10580-10590 (2015).
Igakura, T. et al. Spread of HTLV-1 between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299, 1713-1716 (2003).
Pais-Correia, A. M. et al. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat. Med. 16, 83-89 (2010).
Van Prooyen, N. et al. Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission. Proc. Natl Acad. Sci. USA 107, 20738-20743 (2010).
Gross, C. & Thoma-Kress, A. K. Molecular mechanisms of HTLV-1 cell-to-cell transmission. Viruses 8, 74 (2016).
Chevalier, S. A. et al. Gem-induced cytoskeleton remodeling increases cellular migration of HTLV-1-infected cells, formation of infected-to-target T-cell conjugates and viral transmission. PLoS Pathog. 10, e1003917 (2014).
Giraudon, P. et al. Insight into the role of CRMP2 (collapsin response mediator protein 2) in T lymphocyte migration: the particular context of virus infection. Cell Adh. Migr. 7, 38-43 (2013).
Varrin-Doyer, M. et al. Human T lymphotropic virus type 1 increases T lymphocyte migration by recruiting the cytoskeleton organizer CRMP2. J. Immunol. 188, 1222-1233 (2012).
Saggioro, D. et al. Chemoattractant(s) in culture supernatants of HTLV-IInfected T-cell lines. AIDS Res. Hum. Retroviruses 7, 571-577 (1991).
Trindade, B. C. et al. Leukotrienes are upregulated and associated with human T-lymphotropic virus type 1 (HTLV-1)-associated neuroinflammatory disease. PLoS ONE 7, e51873 (2012).
Le Bel, M., Brunet, A. & Gosselin, J. Leukotriene B4, an endogenous stimulator of the innate immune response against pathogens. J. Innate Immun. 6, 159-168 (2014).
Canetti, C. A. et al. IL-18 enhances collagen-induced arthritis by recruiting neutrophils via TNF-alpha and leukotriene B4. J. Immunol. 171, 1009-1015 (2003).
Grespan, R. et al. CXCR2-specific chemokines mediate leukotriene B4-dependent recruitment of neutrophils to inflamed joints in mice with antigen-induced arthritis. Arthritis Rheum. 58, 2030-2040 (2008).
Lammermann, T. et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498, 371-375 (2013).
Afonso, P. V. et al. LTB4 is a signal-relay molecule during neutrophil chemotaxis. Dev. Cell 22, 1079-1091 (2012).
Peters-Golden, M. & Henderson, Jr W. R. Leukotrienes. N. Engl. J. Med. 357, 1841-1854 (2007).
Yokomizo, T. Leukotriene B4 receptors: novel roles in immunological regulations. Adv. Enzyme Regul. 51, 59-64 (2011).
Lewis, R. A. & Austen, K. F. The biologically active leukotrienes. Biosynthesis, metabolism, receptors, functions, and pharmacology. J. Clin. Invest. 73, 889-897 (1984).
Odlander, B. et al. Formation and effects of leukotriene B4 in human lymphocytes. Int. J. Tissue React. 11, 277-289 (1989).
Odlander, B., Jakobsson, P. J., Rosen, A. & Claesson, H. E. Human B and T lymphocytes convert leukotriene A4 into leukotriene B4. Biochem. Biophys. Res. Commun. 153, 203-208 (1988).
Fu, J. Y., Medina, J. F., Funk, C. D., Wetterholm, A. & Radmark, O. Leukotriene A4, conversion to leukotriene B4 in human T-cell lines. Prostaglandins 36, 241-248 (1988).
Cook-Moreau, J. M. et al. Expression of 5-lipoxygenase (5-LOX) in T lymphocytes. Immunology 122, 157-166 (2007).
Kudo, I. & Murakami, M. Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat. 68-69, 3-58 (2002).
Dennis, E. A., Cao, J., Hsu, Y. H., Magrioti, V. & Kokotos, G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem. Rev. 111, 6130-6185 (2011).
Poubelle, P. E., Borgeat, P. & Rola-Pleszczynski, M. Assessment of leukotriene B4 synthesis in human lymphocytes by using high performance liquid chromatography and radioimmunoassay methods. J. Immunol. 139, 1273-1277 (1987).
Ghosh, M., Tucker, D. E., Burchett, S. A. & Leslie, C. C. Properties of the Group IV phospholipase A2 family. Prog. Lipid Res. 45, 487-510 (2006).
Smith, M. R. & Greene, W. C. Identification of HTLV-I tax trans-activator mutants exhibiting novel transcriptional phenotypes. Genes Dev. 4, 1875-1885 (1990).
Bickford, J. S. et al. Induction of group IVC phospholipase A2 in allergic asthma: transcriptional regulation by TNFalpha in bronchoepithelial cells. Biochem. J. 442, 127-137 (2012).
Villaudy, J. et al. HTLV-1 propels thymic human T cell development in 'human immune system' Rag2-/- gamma c-/- mice. PLoS Pathog. 7, e1002231 (2011).
Rosewick, N. et al. Cis-perturbation of cancer drivers by the HTLV-1/BLV proviruses is an early determinant of leukemogenesis. Nat. Commun. 8, 15264 (2017).
Pique, C. & Jones, K. S. Pathways of cell-cell transmission of HTLV-1. Front. Microbiol. 3, 378 (2012).
Guerreiro, J. B. et al. Spontaneous neutrophil activation in HTLV-1 infected patients. Braz. J. Infect. Dis. 9, 510-514 (2005).
Lavorgna, A., Matsuoka, M. & Harhaj, E. W. A critical role for IL-17RB signaling in HTLV-1 tax-induced NF-kappaB activation and T-cell transformation. PLoS Pathog. 10, e1004418 (2014).
Tattermusch, S. et al. Systems biology approaches reveal a specific interferon-inducible signature in HTLV-1 associated myelopathy. PLoS Pathog. 8, e1002480 (2012).
Hieshima, K. et al. Tax-inducible production of CC chemokine ligand 22 by human T cell leukemia virus type 1 (HTLV-1)-infected T cells promotes preferential transmission of HTLV-1 to CCR4-expressing CD4+ T cells. J. Immunol. 180, 931-939 (2008).
Sugata, K. et al. HTLV-1 viral factor HBZ induces CCR4 to promote T-cell migration and proliferation. Cancer Res. 76, 5068-5079 (2016).
Peres, E. et al. From immunodeficiency to humanization: the contribution of mouse models to explore HTLV-1 leukemogenesis. Viruses 7, 6371-6386 (2015).
Gillet, N. A. et al. The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones. Blood 117, 3113-3122 (2011).
Deltas, G. The small-sample bias of the gini coefficient: results and implications for empirical research. Rev. Econ. Stat. 85, 226-234 (2003).
Wattel, E., Cavrois, M., Gessain, A. & Wain-Hobson, S. Clonal expansion of infected cells: a way of life for HTLV-I. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 13(Suppl 1): S92-S99 (1996).
Fox, J. M. et al. Long terminal repeat circular DNA as markers of active viral replication of human T lymphotropic virus-1 in vivo. Viruses 8, 80 (2016).
Cook, L. B. et al. Rapid dissemination of human T-lymphotropic virus type 1 during primary infection in transplant recipients. Retrovirology 13, 3 (2016).
Kitamura, K. et al. Unintegrated two-long terminal repeat circular human T lymphotropic virus DNA accumulation during chronic HTLV infection. AIDS Res. Hum. Retroviruses 9, 1167-1172 (1993).
Shimizu, T., Ohto, T. & Kita, Y. Cytosolic phospholipase A2: biochemical properties and physiological roles. IUBMB Life 58, 328-333 (2006).
Movahedi Naini, S., Sheridan, A. M., Force, T., Shah, J. V. & Bonventre, J. V. Group IVA cytosolic phospholipase A2 regulates the G2-to-M transition by modulating the activity of tumor suppressor SIRT2. Mol. Cell. Biol. 35, 3768-3784 (2015).
Levy, R. The role of cytosolic phospholipase A2-alfa in regulation of phagocytic functions. Biochim. Biophys. Acta 1761, 1323-1334 (2006).
Moriuchi, M., Inoue, H. & Moriuchi, H. Reciprocal interactions between human T-lymphotropic virus type 1 and prostaglandins: implications for viral transmission. J. Virol. 75, 192-198 (2001).
Mori, N., Inoue, H., Yoshida, T., Tanabe, T. & Yamamoto, N. Constitutive expression of the cyclooxygenase-2 gene in T-cell lines infected with human T cell leukemia virus type I. Int. J. Cancer 94, 813-819 (2001).
Gabet, A. S. et al. High circulating proviral load with oligoclonal expansion of HTLV-1 bearing T cells in HTLV-1 carriers with strongyloidiasis. Oncogene 19, 4954-4960 (2000).
Chevalier, S. A. et al. The transcription profile of Tax-3 is more similar to Tax-1 than Tax-2: insights into HTLV-3 potential leukemogenic properties. PLoS ONE 7, e41003 (2012).
Rubio, J. M. et al. Group V secreted phospholipase A2 is upregulated by IL-4 in human macrophages and mediates phagocytosis via hydrolysis of ethanolamine phospholipids. J. Immunol. 194, 3327-3339 (2015).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.