Phenylacetylene trimer; open quantum system HEOM; coherent excitation
Abstract :
[en] Funneling dynamics in conjugated dendrimers has raised great interest in the context of artificial light-harvesting processes. Photoinduced
relaxation has been explored by time-resolved spectroscopy and simulations, mainly by semiclassical approaches or referring to open quantum
systems methods, within the Redfield approximation. Here, we take the benefit of an ab initio investigation of a phenylacetylene trimer,
and in the spirit of a divide-and-conquer approach, we focus on the early dynamics of the hierarchy of interactions. We build a simplified
but realistic model by retaining only bright electronic states and selecting the vibrational domain expected to play the dominant role for
timescales shorter than 500 fs. We specifically analyze the role of the in-plane high-frequency skeletal vibrational modes involving the triple
bonds. Open quantum system non-adiabatic dynamics involving conical intersections is conducted by separating the electronic subsystem
from the high-frequency tuning and coupling vibrational baths. This partition is implemented within a robust non-perturbative and non-
Markovian method, here the hierarchical equations of motion. We will more precisely analyze the coherent preparation of donor states or
of their superposition by short laser pulses with different polarizations. In particular, we extend the π-pulse strategy for the creation of a
superposition to a V-type system. We study the relaxation induced by the high-frequency vibrational collective modes and the transitory
dissymmetry, which results from the creation of a superposition of electronic donor states.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
L.Valkunas et al., Photosynthetic Excitons (World Scientific, 2000).
R. E.Blankenship, Molecular Mechanisms of Photosynthesis (John Wiley & Sons, 2014).
G. D.Scholes, G. R.Fleming, A.Olaya-Castro, and R.Van Grondelle, Nat. Chem. 3, 763 (2011). 10.1038/nchem.1145
G. D.Scholes, G. R.Fleming, L. X.Chen, A.Aspuru-Guzik, A.Buchleitner, D. F.Coker, G. S.Engel, R.van Grondelle, A.Ishizaki, D. M.Jonas, J. S.Lundeen, J. K.McCusker, S.Mukamel, J. P.Ogilvie, A.Olaya-Castro, M. A.Ratner, F. C.Spano, K. B.Whaley, and X.Zhu, Nature 543, 647 (2017). 10.1038/nature21425
M.Cainelli and Y.Tanimura, J. Chem. Phys. 154, 034107 (2021). 10.1063/5.0036590
H.-G.Duan, V. I.Prokhorenko, R. J.Cogdell, K.Ashraf, A. L.Stevens, M.Thorwart, and R. J. D.Miller, Proc. Natl. Acad. Sci. U. S. A. 114, 8493 (2017). 10.1073/pnas.1702261114
V. I.Novoderezhkin, E.Romero, J.Prior, and R.van Grondelle, Phys. Chem. Chem. Phys. 19, 5195 (2017). 10.1039/c6cp07308e
A.Kolli, E. J.O’Reilly, G. D.Scholes, and A.Olaya-Castro, J. Chem. Phys. 137, 174109 (2012). 10.1063/1.4764100
A. W.Chin, J.Prior, R.Rosenbach, F.Caycedo-Soler, S. F.Huelga, and M. B.Plenio, Nat. Phys. 9, 113 (2013). 10.1038/nphys2515
F.Ma, E.Romero, M. R.Jones, V. I.Novoderezhkin, and R.van Grondelle, Nat. Commun. 10, 933 (2019). 10.1038/s41467-019-08751-8
A.Niedringhaus, V. R.Policht, R.Sechrist, A.Konar, P. D.Laible, D. F.Bocian, D.Holten, C.Kirmaier, and J. P.Ogilvie, Proc. Natl. Acad. Sci. U. S. A. 115, 3563 (2018). 10.1073/pnas.1721927115
A.Ishizaki, T. R.Calhoun, G. S.Schlau-Cohen, and G. R.Fleming, Phys. Chem. Chem. Phys. 12, 7319 (2010). 10.1039/c003389h
C.Kreisbeck and T.Kramer, J. Phys. Chem. Lett. 3, 2828 (2012); arXiv:1203.1485. 10.1021/jz3012029
J.Strümpfer and K.Schulten, J. Chem. Phys. 137, 065101 (2012). 10.1063/1.4738953
S.-H.Yeh, J.Zhu, and S.Kais, J. Chem. Phys. 137, 084110 (2012). 10.1063/1.4747622
M. F.Gelin and W.Domcke, J. Chem. Phys. 144, 194104 (2016). 10.1063/1.4948790
H.-P.Breuer and F.Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).
U.Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 2012).
L.Chen, M. F.Gelin, V. Y.Chernyak, W.Domcke, and Y.Zhao, Faraday Discuss. 194, 61 (2016). 10.1039/c6fd00088f
H.-G.Duan and M.Thorwart, J. Phys. Chem. Lett. 7, 382 (2016). 10.1021/acs.jpclett.5b02793
A. G.Dijkstra and V. I.Prokhorenko, J. Chem. Phys. 147, 064102 (2017). 10.1063/1.4997433
C.Arnold, O.Vendrell, R.Welsch, and R.Santra, Phys. Rev. Lett. 120, 123001 (2018). 10.1103/physrevlett.120.123001
B. G.Levine, M. P.Esch, B. S.Fales, D. T.Hardwick, W.-T.Peng, and Y.Shu, Annu. Rev. Phys. Chem. 70, 21 (2019). 10.1146/annurev-physchem-042018-052425
E. C.Wu, Q.Ge, E. A.Arsenault, N. H. C.Lewis, N. L.Gruenke, M. J.Head-Gordon, and G. R.Fleming, Phys. Chem. Chem. Phys. 21, 14153 (2019). 10.1039/c8cp05264f
E.Mangaud, B.Lasorne, O.Atabek, and M.Desouter-Lecomte, J. Chem. Phys. 151, 244102 (2019). 10.1063/1.5128852
T.Mančal and L.Valkunas, New J. Phys. 12, 065044 (2010). 10.1088/1367-2630/12/6/065044
T. V.Tscherbul and P.Brumer, Phys. Rev. Lett. 113, 113601 (2014). 10.1103/physrevlett.113.113601
A.Chenu and P.Brumer, J. Chem. Phys. 144, 044103 (2016). 10.1063/1.4940028
A.Dodin, T. V.Tscherbul, and P.Brumer, J. Chem. Phys. 145, 244313 (2016). 10.1063/1.4972140
T. V.Tscherbul and P.Brumer, J. Chem. Phys. 148, 124114 (2018). 10.1063/1.5028121
V.Janković and T.Mančal, J. Chem. Phys. 153, 244110 (2020). 10.1063/5.0029918
J. D.Roscioli, S.Ghosh, A. M.LaFountain, H. A.Frank, and W. F.Beck, J. Phys. Chem. Lett. 9, 5071 (2018). 10.1021/acs.jpclett.8b01919
W.Hu, B.Gu, and I.Franco, J. Chem. Phys. 152, 184305 (2020). 10.1063/5.0002166
S.Tomasi, S.Baghbanzadeh, S.Rahimi-Keshari, and I.Kassal, Phys. Rev. A 100, 043411 (2019). 10.1103/physreva.100.043411
A. G.Dijkstra and A.Beige, J. Chem. Phys. 151, 034114 (2019). 10.1063/1.5100210
N. V.Vitanov, A. A.Rangelov, B. W.Shore, and K.Bergmann, Rev. Mod. Phys. 89, 015006 (2017). 10.1103/revmodphys.89.015006
E. Y.Poliakov, V.Chernyak, S.Tretiak, and S.Mukamel, J. Chem. Phys. 110, 8161 (1999). 10.1063/1.478730
J. C.Kirkwood, C.Scheurer, V.Chernyak, and S.Mukamel, J. Chem. Phys. 114, 2419 (2001). 10.1063/1.1334612
R.Kishi, T.Minami, H.Fukui, H.Takahashi, and M.Nakano, J. Chem. Phys. 128, 244306 (2008). 10.1063/1.2939244
S.Fernandez-Alberti, V. D.Kleiman, S.Tretiak, and A. E.Roitberg, J. Phys. Chem. A 113, 7535 (2009). 10.1021/jp900904q
J. L.Palma, E.Atas, L.Hardison, T. B.Marder, J. C.Collings, A.Beeby, J. S.Melinger, J. L.Krause, V. D.Kleiman, and A. E.Roitberg, J. Phys. Chem. C 114, 20702 (2010). 10.1021/jp1062918
J.Huang, L.Du, D.Hu, and Z.Lan, J. Comput. Chem. 36, 151 (2015). 10.1002/jcc.23778
D.Ondarse-Alvarez, S.Kömürlü, A. E.Roitberg, G.Pierdominici-Sottile, S.Tretiak, S.Fernandez-Alberti, and V. D.Kleiman, Phys. Chem. Chem. Phys. 18, 25080 (2016). 10.1039/c6cp04448d
T.Nelson, S.Fernandez-Alberti, A. E.Roitberg, and S.Tretiak, J. Phys. Chem. Lett. 8, 3020 (2017). 10.1021/acs.jpclett.7b00790
M. C.Aguilera, A. E.Roitberg, V. D.Kleiman, S.Fernandez-Alberti, and J. F.Galindo, J. Phys. Chem. C 124, 22383 (2020). 10.1021/acs.jpcc.0c06539
E. K.-L.Ho and B.Lasorne, Comput. Theor. Chem. 1156, 25 (2019). 10.1016/j.comptc.2019.03.013
A.Garg, J. N.Onuchic, and V.Ambegaokar, J. Chem. Phys. 83, 4491 (1985). 10.1063/1.449017
M.Thoss, H.Wang, and W. H.Miller, J. Chem. Phys. 115, 2991 (2001). 10.1063/1.1385562
J.Cao and G. A.Voth, J. Chem. Phys. 106, 1769 (1997). 10.1063/1.474123
K. H.Hughes, C. D.Christ, and I.Burghardt, J. Chem. Phys. 131, 124108 (2009). 10.1063/1.3226343
M.Tanaka and Y.Tanimura, J. Chem. Phys. 132, 214502 (2010). 10.1063/1.3428674
A.Chenel, E.Mangaud, I.Burghardt, C.Meier, and M.Desouter-Lecomte, J. Chem. Phys. 140, 044104 (2014). 10.1063/1.4861853
M. P.Woods, R.Groux, A. W.Chin, S. F.Huelga, and M. B.Plenio, J. Math. Phys. 55, 032101 (2014). 10.1063/1.4866769
J.Iles-Smith, N.Lambert, and A.Nazir, Phys. Rev. A 90, 032114 (2014). 10.1103/physreva.90.032114
J.Iles-Smith, A. G.Dijkstra, N.Lambert, and A.Nazir, J. Chem. Phys. 144, 044110 (2016). 10.1063/1.4940218
H.Wang and M.Thoss, J. Chem. Phys. 119, 1289 (2003). 10.1063/1.1580111
F.Di Maiolo, D.Brey, R.Binder, and I.Burghardt, J. Chem. Phys. 153, 184107 (2020). 10.1063/5.0027588
A. M.Alvertis, F. A. Y. N.Schröder, and A. W.Chin, J. Chem. Phys. 151, 084104 (2019). 10.1063/1.5115239
J.Sun, B.Luo, and Y.Zhao, Phys. Rev. B 82, 014305 (2010). 10.1103/physrevb.82.014305
Y.Ke and Y.Zhao, J. Chem. Phys. 146, 174105 (2017). 10.1063/1.4982230
K.Nakamura and Y.Tanimura, Phys. Rev. A 98, 012109 (2018). 10.1103/physreva.98.012109
Y.Tanimura and R.Kubo, J. Phys. Soc. Jpn. 58, 101 (1989). 10.1143/jpsj.58.101
A.Ishizaki and Y.Tanimura, J. Phys. Soc. Jpn. 74, 3131 (2005). 10.1143/jpsj.74.3131
A.Ishizaki and G. R.Fleming, J. Chem. Phys. 130, 234111 (2009). 10.1063/1.3155372
Q.Shi, L.Chen, G.Nan, R.-X.Xu, and Y.Yan, J. Chem. Phys. 130, 084105 (2009). 10.1063/1.3077918
H.Liu, L.Zhu, S.Bai, and Q.Shi, J. Chem. Phys. 140, 134106 (2014). 10.1063/1.4870035
Y.Tanimura, J. Chem. Phys. 153, 020901 (2020). 10.1063/5.0011599
M. J.Frisch, G. W.Trucks, H. B.Schlegel, G. E.Scuseria, M. A.Robb, J. R.Cheeseman, G.Scalmani, V.Barone, G. A.Petersson, H.Nakatsuji, X.Li, M.Caricato, A. V.Marenich, J.Bloino, B. G.Janesko, R.Gomperts, B.Mennucci, H. P.Hratchian, J. V.Ortiz, A. F.Izmaylov, J. L.Sonnenberg, D.Williams-Young, F.Ding, F.Lipparini, F.Egidi, J.Goings, B.Peng, A.Petrone, T.Henderson, D.Ranasinghe, V. G.Zakrzewski, J.Gao, N.Rega, G.Zheng, W.Liang, M.Hada, M.Ehara, K.Toyota, R.Fukuda, J.Hasegawa, M.Ishida, T.Nakajima, Y.Honda, O.Kitao, H.Nakai, T.Vreven, K.Throssell, J. A.Montgomery, Jr., J. E.Peralta, F.Ogliaro, M. J.Bearpark, J. J.Heyd, E. N.Brothers, K. N.Kudin, V. N.Staroverov, T. A.Keith, R.Kobayashi, J.Normand, K.Raghavachari, A. P.Rendell, J. C.Burant, S. S.Iyengar, J.Tomasi, M.Cossi, J. M.Millam, M.Klene, C.Adamo, R.Cammi, J. W.Ochterski, R. L.Martin, K.Morokuma, O.Farkas, J. B.Foresman, and D. J.Fox, GAUSSIAN 16, Revision A.03, Gaussian, Inc., Wallingford, CT, 2016.
E. K.-L.Ho, T.Etienne, and B.Lasorne, J. Chem. Phys. 146, 164303 (2017). 10.1063/1.4981802
B.Gonon, A.Perveaux, F.Gatti, D.Lauvergnat, and B.Lasorne, J. Chem. Phys. 147, 114114 (2017). 10.1063/1.4991635
R. L.Martin, J. Chem. Phys. 118, 4775 (2003). 10.1063/1.1558471
M.Desouter-Lecomte, D.Dehareng, B.Leyh-Nihant, M. T.Praet, A. J.Lorquet, and J. C.Lorquet, J. Phys. Chem. 89, 214 (1985). 10.1021/j100248a006
J. R.Reimers and N. S.Hush, Chem. Phys. 299, 79 (2004). 10.1016/j.chemphys.2003.12.010
L. K.McKemmish, R. H.McKenzie, N. S.Hush, and J. R.Reimers, J. Chem. Phys. 135, 244110 (2011). 10.1063/1.3671386
A.Kühl and W.Domcke, J. Chem. Phys. 116, 263 (2002). 10.1063/1.1423326
L. S.Cederbaum, E.Gindensperger, and I.Burghardt, Phys. Rev. Lett. 94, 113003 (2005). 10.1103/physrevlett.94.113003
E.Gindensperger, I.Burghardt, and L. S.Cederbaum, J. Chem. Phys. 124, 144103 (2006). 10.1063/1.2183304
R.Martinazzo, K. H.Hughes, F.Martelli, and I.Burghardt, Chem. Phys. 377, 21 (2010). 10.1016/j.chemphys.2010.08.010
V.Chernyak and S.Mukamel, J. Chem. Phys. 105, 4565 (1996). 10.1063/1.472302
I.Burghardt, R.Martinazzo, and K. H.Hughes, J. Chem. Phys. 137, 144107 (2012). 10.1063/1.4752078
K. H.Hughes, B.Cahier, R.Martinazzo, H.Tamura, and I.Burghardt, Chem. Phys. 442, 111 (2014), part of Special Issue: Papers from the 11th International Conference on Femtochemistry (FEMTO11) that took place at The Technical University of Denmark, DTU, Copenhagen. 10.1016/j.chemphys.2014.06.015
J.Strümpfer and K.Schulten, J. Chem. Phys. 134, 095102 (2011). 10.1063/1.3557042
M. F.Gelin, L. Z.Sharp, D.Egorova, and W.Domcke, J. Chem. Phys. 136, 034507 (2012). 10.1063/1.3676063
W.Popp, M.Polkehn, K. H.Hughes, R.Martinazzo, and I.Burghardt, J. Chem. Phys. 150, 244114 (2019). 10.1063/1.5100529
R.Borrelli and M. F.Gelin, Sci. Rep. 7, 9127 (2017). 10.1038/s41598-017-08901-2
Q.Shi, Y.Xu, Y.Yan, and M.Xu, J. Chem. Phys. 148, 174102 (2018). 10.1063/1.5026753
Y.Yan, M.Xu, T.Li, and Q.Shi, J. Chem. Phys. 154, 194104 (2021). 10.1063/5.0050720
H.Tamura, R.Martinazzo, M.Ruckenbauer, and I.Burghardt, J. Chem. Phys. 137, 22A540 (2012). 10.1063/1.4751486
C.Meier and D. J.Tannor, J. Chem. Phys. 111, 3365 (1999). 10.1063/1.479669
A.Pomyalov, C.Meier, and D. J.Tannor, Chem. Phys. 370, 98 (2010). 10.1016/j.chemphys.2010.02.017
J.Hu, M.Luo, F.Jiang, R.-X.Xu, and Y.Yan, J. Chem. Phys. 134, 244106 (2011). 10.1063/1.3602466
L.Cui, H.-D.Zhang, X.Zheng, R.-X.Xu, and Y.Yan, J. Chem. Phys. 151, 024110 (2019). 10.1063/1.5096945
H.Rahman and U.Kleinekathöfer, J. Chem. Phys. 150, 244104 (2019). 10.1063/1.5100102
L.Zhu, H.Liu, W.Xie, and Q.Shi, J. Chem. Phys. 137, 194106 (2012). 10.1063/1.4766358
A. W.Chin, E.Mangaud, V.Chevet, O.Atabek, and M.Desouter-Lecomte, Chem. Phys. 525, 110392 (2019). 10.1016/j.chemphys.2019.110392
W. H.Press, S. A.Teukolsky, W. T.Vetterling, and B. P.Flannery, Numerical Recipes—The Art of Scientific Computing (Cambridge University Press, 1992).
T.Nelson, S.Fernandez-Alberti, A. E.Roitberg, and S.Tretiak, Acc. Chem. Res. 47, 1155 (2014). 10.1021/ar400263p
G. F.Thomas, Phys. Rev. A 27, 2744 (1983). 10.1103/physreva.27.2744
M.Holthaus and B.Just, Phys. Rev. A 49, 1950 (1994). 10.1103/physreva.49.1950
V. S.Malinovsky and J. L.Krause, Eur. Phys. J. D 14, 147 (2001). 10.1007/s100530170212
S.Guérin, V.Hakobyan, and H. R.Jauslin, Phys. Rev. A 84, 013423 (2011). 10.1103/physreva.84.013423
A. M.Weiner, Rev. Sci. Instrum. 71, 1929 (2000). 10.1063/1.1150614
J.Cao, C. J.Bardeen, and K. R.Wilson, J. Chem. Phys. 113, 1898 (2000). 10.1063/1.481993
V. V.Yakovlev, C. J.Bardeen, J.Che, J.Cao, and K. R.Wilson, J. Chem. Phys. 108, 2309 (1998). 10.1063/1.475615
S.Tomasi and I.Kassal, J. Phys. Chem. Lett. 11, 2348 (2020). 10.1021/acs.jpclett.9b03490
D.Haase, G.Hermann, J.Manz, V.Pohl, and J. C.Tremblay, Symmetry 13, 205 (2021). 10.3390/sym13020205
M. A.Robb, A. J.Jenkins, and M.Vacher, Attosecond Molecular Dynamics (The Royal Society of Chemistry, 2018), pp. 275-307.
D.Sugny, A.Keller, O.Atabek, D.Daems, C. M.Dion, S.Guérin, and H. R.Jauslin, Phys. Rev. A 69, 033402 (2004). 10.1103/physreva.69.033402
C.Fábri, G. J.Halász, L. S.Cederbaum, and Á.Vibók, J. Chem. Phys. 154, 124308 (2021). 10.1063/5.0045069
N.Thanh Phuc and A.Ishizaki, J. Phys. Chem. Lett. 9, 1243 (2018). 10.1021/acs.jpclett.8b00067
N. T.Phuc and A.Ishizaki, Phys. Rev. B 99, 064301 (2019). 10.1103/physrevb.99.064301
E.Mangaud, R.Puthumpally-Joseph, D.Sugny, C.Meier, O.Atabek, and M.Desouter-Lecomte, New J. Phys. 20, 043050 (2018). 10.1088/1367-2630/aab651
I.Paparelle, L.Moro, and E.Prati, Phys. Lett. A 384, 126266 (2020). 10.1016/j.physleta.2020.126266
A.Leclerc, D.Viennot, G.Jolicard, R.Lefebvre, and O.Atabek, Phys. Rev. A 94, 043409 (2016). 10.1103/physreva.94.043409
A.Leclerc, D.Viennot, G.Jolicard, R.Lefebvre, and O.Atabek, J. Phys. B: At., Mol. Opt. Phys. 50, 234002 (2017). 10.1088/1361-6455/aa8ca1
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.