This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.
All documents in ORBi are protected by a user license.
Madland, E.; Department of Biotechnology and Food Science, Norwegian Biopolymer Laboratory (NOBIPOL), NTNU Norwegian University of Science and Technology, Trondheim, 7491, Norway
Crasson, O.; InBioS - Center for Protein Engineering, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège, 4000, Belgium
Vandevenne, Marylène ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'Ingénierie des Protéines
Sørlie, M.; Department of Chemistry, Biotechnology and Food Science, NMBU Norwegian University of Life Sciences, As, 1430, Norway
Aachmann, F. L.; Department of Biotechnology and Food Science, Norwegian Biopolymer Laboratory (NOBIPOL), NTNU Norwegian University of Science and Technology, Trondheim, 7491, Norway
Language :
English
Title :
NMR and Fluorescence Spectroscopies Reveal the Preorganized Binding Site in Family 14 Carbohydrate-Binding Module from Human Chitotriosidase
Publication date :
2019
Journal title :
ACS Omega
eISSN :
2470-1343
Publisher :
American Chemical Society, Washington DC, United States - Washington
Aboitiz, N.; Vila-Perello, M.; Groves, P.; Asensio, J. L.; Andreu, D.; Canada, F. J.; Jimenez-Barbero, J. NMR and modeling studies of protein-carbohydrate interactions: synthesis, three-dimensional structure, and recognition properties of a minimum hevein domain with binding affinity for chitooligosaccharides. ChemBioChem 2004, 5, 1245-1255, 10.1002/cbic.200400025
Guillen, D.; Sanchez, S.; Rodriguez-Sanoja, R. Carbohydrate-binding domains: multiplicity of biological roles. Appl. Microbiol. Biotechnol. 2010, 85, 1241-1249, 10.1007/s00253-009-2331-y
Boraston, A. B.; Bolam, D. N.; Gilbert, H. J.; Davies, G. J. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 2004, 382, 769-781, 10.1042/BJ20040892
Rinaudo, M. Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 2008, 57, 397-430, 10.1002/pi.2378
Lee, C. G.; Da Silva, C. A.; Lee, J. Y.; Hartl, D.; Elias, J. A. Chitin regulation of immune responses: an old molecule with new roles. Curr. Opin. Immunol. 2008, 20, 684-689, 10.1016/j.coi.2008.10.002
Zelensky, A. N.; Gready, J. E. The C-type lectin-like domain superfamily. FEBS J. 2005, 272, 6179-6217, 10.1111/j.1742-4658.2005.05031.x
Hussain, M.; Wilson, J. B. New paralogues and revised time line in the expansion of the vertebrate GH18 family. J. Mol. Evol. 2013, 76, 240-260, 10.1007/s00239-013-9553-4
Boot, R. G.; Blommaart, E. F.; Swart, E.; Ghauharali-van der Vlugt, K.; Bijl, N.; Moe, C.; Place, A.; Aerts, J. M. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J. Biol. Chem. 2001, 276, 6770-6778, 10.1074/jbc.M009886200
Renkema, G. H.; Boot, R. G.; Strijland, A.; Donker-Koopman, W. E.; Berg, M.; Muijsers, A. O.; Aerts, J. M. Synthesis, sorting, and processing into distinct isoforms of human macrophage chitotriosidase. Eur. J. Biochem. 1997, 244, 279-285, 10.1111/j.1432-1033.1997.00279.x
Lombard, V.; Golaconda, H. R.; Drula, E.; Coutinho, P. M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490-D495, 10.1093/nar/gkt1178
Fadel, F.; Zhao, Y.; Cousido-Siah, A.; Ruiz, F. X.; Mitschler, A.; Podjarny, A. X-ray crystal structure of the full length human chitotriosidase (CHIT1) reveals features of its chitin binding domain. PLoS One 2016, 11, e0154190 10.1371/journal.pone.0154190
Tjoelker, L. W.; Gosting, L.; Frey, S.; Hunter, C. L.; Trong, H. L.; Steiner, B.; Brammer, H.; Gray, P. W. Structural and functional definition of the human chitinase chitin-binding domain. J. Biol. Chem. 2000, 275, 514-520, 10.1074/jbc.275.1.514
Crasson, O.; Courtade, G.; Leonard, R. R.; Aachmann, F. L.; Legrand, F.; Parente, R.; Baurain, D.; Galleni, M.; Sorlie, M.; Vandevenne, M. Human chitotriosidase: catalytic domain or carbohydrate binding module, who's leading HCHT's biological function. Sci. Rep. 2017, 7, 2768 10.1038/s41598-017-02382-z
Stockinger, L. W.; Eide, K. B.; Dybvik, A. I.; Sletta, H.; Varum, K. M.; Eijsink, V. G.; Tondervik, A.; Sorlie, M. The effect of the carbohydrate binding module on substrate degradation by the human chitotriosidase. Biochim. Biophys. Acta 2015, 1854, 1494-1501, 10.1016/j.bbapap.2015.06.008
Suetake, T.; Tsuda, S.; Kawabata, S.; Miura, K.; Iwanaga, S.; Hikichi, K.; Nitta, K.; Kawano, K. Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif. J. Biol. Chem. 2000, 275, 17929-17932, 10.1074/jbc.C000184200
Mueller, G. A.; Randall, T. A.; Glesner, J.; Pedersen, L. C.; Perera, L.; Edwards, L. L.; DeRose, E. F.; Chapman, M. D.; London, R. E.; Pomes, A. Serological, genomic and structural analyses of the major mite allergen Der p 23. Clin. Exp. Allergy 2016, 46, 365-376, 10.1111/cea.12680
Kohler, A. C.; Chen, L. H.; Hurlburt, N.; Salvucci, A.; Schwessinger, B.; Fisher, A. J.; Stergiopoulos, I. Structural analysis of an Avr4 effector ortholog offers insight into chitin binding and recognition by the Cf-4 receptor. Plant Cell 2016, 28, 1945-1965, 10.1105/tpc.15.00893
Hurlburt, N. K.; Chen, L. H.; Stergiopoulos, I.; Fisher, A. J. Structure of the Cladosporium fulvum Avr4 effector in complex with (GlcNAc)6 reveals the ligand-binding mechanism and uncouples its intrinsic function from recognition by the Cf-4 resistance protein. PLoS Pathog. 2018, 14, e1007263 10.1371/journal.ppat.1007263
Wiseman, T.; Williston, S.; Brandts, J. F.; Lin, L. N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 1989, 179, 131-137, 10.1016/0003-2697(89)90213-3
Turnbull, W. B.; Daranas, A. H. On the value of c: Can low affinity systems be studied by isothermal titration calorimetry?. J. Am. Chem. Soc. 2003, 125, 14859-14866, 10.1021/ja036166s
Dalvit, C.; Fogliatto, G.; Stewart, A.; Veronesi, M.; Stockman, B. WaterLOGSY as a method for primary NMR screening: Practical aspects and range of applicability. J. Biomol. NMR 2001, 21, 349-359, 10.1023/A:1013302231549
Dalvit, C. Efficient multiple-solvent suppression for the study of the interactions of organic solvents with biomolecules. J. Biomol. NMR 1998, 11, 437-444, 10.1023/A:1008272928075
Mayer, M.; Meyer, B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem., Int. Ed. 1999, 38, 1784-1788, 10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q
Mayer, M.; Meyer, B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc. 2001, 123, 6108-6117, 10.1021/ja0100120
Braun, W.; Bösch, C.; Brown, L. R.; Go, N.; Wütrich, K. Combined use of proton-proton Overhauser enhancements and a distance geometry algorithm for determination of polypeptide conformations. Biochim. Biophys. Acta 1981, 667, 377-396, 10.1016/0005-2795(81)90205-1
Vandevenne, M.; Campisi, V.; Freichels, A.; Gillard, C.; Gaspard, G.; Frere, J. M.; Galleni, M.; Filee, P. Comparative functional analysis of the human macrophage chitotriosidase. Protein Sci. 2011, 20, 1451-1463, 10.1002/pro.676
Hall, J.; Black, G. W.; Ferreira, L. M.; Millward-Sadler, S. J.; Ali, B. R.; Hazlewood, G. P.; Gilbert, H. J. The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis og Avicel. Biochem. J. 1995, 309, 749-756, 10.1042/bj3090749
Bolam, D. N.; Ciruela, A.; McQueen-Mason, S.; Simpson, P.; Williamson, M. P.; Rixon, J. E.; Boraston, A.; Hazlewood, G. P.; Gilbert, H. J. Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem. J. 1998, 331, 775-781, 10.1042/bj3310775
Herve, C.; Rogowski, A.; Blake, A. W.; Marcus, S. E.; Gilbert, H. J.; Knox, J. P. Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 15293-15298, 10.1073/pnas.1005732107
Crouch, L. I.; Labourel, A.; Walton, P. H.; Davies, G. J.; Gilbert, H. J. The contribution of non-catalytic carbohydrate binding modules to the activity of lytic polysaccharide monooxygenases. J. Biol. Chem. 2016, 291, 7439-7449, 10.1074/jbc.M115.702365
Zolotnitsky, G.; Cogan, U.; Adir, N.; Solomon, V.; Shoham, G.; Shoham, Y. Mapping glycoside hydrolase substrate subsites by isothermal titration calorimetry. Proc. Natl. Acad. Sci. U.S.A. 2004, 31, 11275-11280, 10.1073/pnas.0404311101
Norberg, A. L.; Karlsen, V.; Hoell, I. A.; Bakke, I.; Eijsink, V. G.; Sorlie, M. Determination of substrate binding energies in individual subsites of a family 18 chitinase. FEBS Lett. 2010, 584, 4581-4585, 10.1016/j.febslet.2010.10.017
Kurasin, M.; Kuusk, S.; Kuusk, P.; Sorlie, M.; Valjamae, P. Slow off-rates and strong product binding are required for processivity and efficient degradation of recalcitrant chitin by family 18 chitinases. J. Biol. Chem. 2015, 290, 29074-29085, 10.1074/jbc.M115.684977
Zhang, H.; Neal, S.; Wishart, D. S. RefDB: A database of uniformly referenced protein chemical shifts. J. Biomol. NMR 2003, 25, 173-195, 10.1023/A:1022836027055
Keller, R. The Computer Aided Resonance Assignment; C. Verlag: Goldau, Switzerland, 2004.
Shen, Y.; Bax, A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J. Biomol. NMR 2013, 56, 227-241, 10.1007/s10858-013-9741-y
Güntert, P.; Mumenthaler, C.; Wüthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 1997, 273, 283-298, 10.1006/jmbi.1997.1284
Güntert, P. Automated NMR Structure Calculation with CYANA. In Protein NMR Techniques; Downing, A. K., Ed.; Humana Press: Totowa, NJ, 2004; pp 353-378.
Krieger, E.; Koraimann, G.; Vriend, G. Increasing the precision of comparative models with YASARA NOVA - a self-parameterizing force field. Proteins 2002, 47, 393-402, 10.1002/prot.10104
Krieger, E.; Joo, K.; Lee, J.; Lee, J.; Raman, S.; Thompson, J.; Tyka, M.; Baker, D.; Karplus, K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CAPS8. Proteins 2009, 77, 114-122, 10.1002/prot.22570
Mulder, F. A. A.; Schipper, D.; Bott, R.; Boelens, R. Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins. J. Mol. Biol. 1999, 292, 111-123, 10.1006/jmbi.1999.3034
van Zundert, G. C. P.; Rodrigues, J.; Trellet, M.; Schmitz, C.; Kastritis, P. L.; Karaca, E.; Melquiond, A. S. J.; van Dijk, M.; de Vries, S. J.; Bonvin, A. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. J. Mol. Biol. 2016, 428, 720-725, 10.1016/j.jmb.2015.09.014