Gabelica, V.; University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site, 2 rue Robert Escarpit, Pessac, 33600, France
Shvartsburg, A. A.; Department of Chemistry, Wichita State University, 1845 Fairmount St., Wichita, KS 67620, United States
Afonso, C.; Université de Rouen, Mont-Saint-Aignan, France
Barran, P.; Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute for Biotechnology, University of Manchester, Manchester, United Kingdom
Benesch, J. L. P.; Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
Bleiholder, C.; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32311, United States
Bowers, M. T.; University of California, Santa Barbara, CA, United States
Bilbao, A.; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
Bush, M. F.; Department of Chemistry, University of Washington, Seattle, WA, United States
Campbell, J. L.; SCIEX, Concord, Ontario, Canada
Campuzano, I. D. G.; Amgen Discovery Research, Thousand Oaks, CA, United States
Causon, T.; University of Natural Resources and Life Sciences (BOKU), Department of Chemistry, Division of Analytical Chemistry, Vienna, Austria
Clowers, B. H.; Department of Chemistry, Washington State University, Pullman, WA, United States
Creaser, C. S.; Centre for Analytical Science, Department of Chemistry, Loughborough University, Loughborough, United Kingdom
De Pauw, Edwin ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Far, Johann ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Fernandez-Lima, F.; Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
Fjeldsted, J. C.; Agilent Technologies, Santa Clara, CA, United States
Giles, K.; Waters Corporation, Wilmslow, United Kingdom
Groessl, M.; Department of Nephrology and Hypertension and Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland and Tofwerk, Thun, Switzerland
Hogan, C. J.; Jr., Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
Hann, S.; University of Natural Resources and Life Sciences (BOKU), Department of Chemistry, Division of Analytical Chemistry, Vienna, Austria
Kim, H. I.; Department of Chemistry, Korea University, Seoul, South Korea
Kurulugama, R. T.; Agilent Technologies, Santa Clara, CA, United States
May, J. C.; Department of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States
McLean, J. A.; Department of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States
Pagel, K.; Freie Universitaet Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
Richardson, K.; Waters Corporation, Wilmslow, United Kingdom
Ridgeway, M. E.; Bruker Daltonics, Billerica, MA, United States
Rosu, F.; CNRS, INSERM and University of Bordeaux, Institut Européen de Chimie et Biologie, Pessac, France
Sobott, F.; Antwerp University, Biomolecular & Analytical Mass Spectrometry, Antwerp, Belgium, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
Thalassinos, K.; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom, United Kingdom and Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, WC1E 7HX, United Kingdom
Valentine, S. J.; C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, United States
Wyttenbach, T.; University of California, Santa Barbara, CA, United States
Allen SJ, Bush MF. 2016. Radio-frequency (rf) confinement in ion mobility spectrometry: apparent mobilities and effective temperatures. J Am Soc Mass Spectrom 27:2054–2063.
Allen SJ, Giles K, Gilbert T, Bush MF. 2016. Ion mobility mass spectrometry of peptide, protein, and protein complex ions using a radio-frequency confining drift cell. Analyst 141:884–891.
Anupriya, Gustafson E, Mortensen DN, Dearden DV. 2017. Quantitative collision cross-sections from FTICR linewidth measurements: improvements in theory and experiment. J Am Soc Mass Spectrom 29:251–259.
Anupriya, Jones CA, Dearden DV. 2016. Collision cross sections for 20 protonated amino acids: fourier transform ion cyclotron resonance and ion mobility results. J Am Soc Mass Spectrom 27:1366–1375.
Attygalle AB, Xia H, Pavlov J. 2017. Influence of ionization source conditions on the gas-phase protomer distribution of anilinium and related cations. J Am Soc Mass Spectrom 28:1575–1586.
Barnett DA, Belford M, Dunyach JJ, Purves RW. 2007. Characterization of a temperature-controlled FAIMS system. J Am Soc Mass Spectrom 18:1653–1663.
Barnett DA, Ells B, Guevremont R, Purves RW, Viehland LA. 2000. Evaluation of carrier gases for use in high-field asymmetric waveform ion mobility spectrometry. J Am Soc Mass Spectrom 11:1125–1133.
Baumbach JI, Davies AN, Lampen P, Schmidt H. 2001. JCAMP-DX. A standard format for the exchange of ion mobility spectrometry data (IUPAC Recommendations 2001). Pure Appl Chem 73:1765–1782.
Ben-Nissan G, Sharon M. 2018. The application of ion-mobility mass spectrometry for structure/function investigation of protein complexes. Curr Opin Chem Biol 42:25–33.
Benesch JL, Ruotolo BT. 2011. Mass spectrometry: come of age for structural and dynamical biology. Curr Opin Struct Biol 21:641–649.
Benigni P, Porter J, Ridgeway ME, Park MA, Fernandez-Lima F. 2018. Increasing analytical separation and duty cycle with nonlinear analytical mobility scan functions in TIMS-FT-ICR MS. Anal Chem 90:2446–2450.
Beveridge R, Covill S, Pacholarz KJ, Kalapothakis JM, MacPhee CE, Barran PE. 2014. A mass-spectrometry-based framework to define the extent of disorder in proteins. Anal Chem 86:10979–10991.
BIPM. 1995. 1st meeting. Com. Cons. Quantité de Matière 1:Q5.
BIPM. 2018. On the future revision of the SI. Sevres, France: BIPM. https://www.bipm.org/en/measurement-units/rev-si/
Bleiholder C. 2016. Towards measuring ion mobilities in non-stationary gases and non-uniform and dynamic electric fields (I). Transport equation). Int J Mass Spectrom 399–400:1–9.
Bleiholder C, Johnson NR, Contreras S, Wyttenbach T, Bowers MT. 2015. Molecular structures and ion mobility cross sections: analysis of the effects of He and N2 buffer gas. Anal Chem 87:7196–7203.
Boschmans J, Jacobs S, Williams JP, Palmer M, Richardson K, Giles K, Lapthorn C, Herrebout WA, Lemiere F, Sobott F. 2016. Combining density functional theory (DFT) and collision cross-section (CCS) calculations to analyze the gas-phase behaviour of small molecules and their protonation site isomers. Analyst 141:4044–4054.
Bowers MT, Kemper PR, Von Helden G, Van Koppen PAM. 1993. Gas-phase ion chromatography: transition metal state selection and carbon cluster formation. Science 260:1446–1451.
Buryakov IA. 2004. Express analysis of explosives, chemical warfare agents and drugs with multicapillary column gas chromatography and ion mobility increment spectrometry. J Chromatogr B 800:75–82.
Bush MF, Campuzano ID, Robinson CV. 2012. Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies. Anal Chem 84:7124–7130.
Bush MF, Hall Z, Giles K, Hoyes J, Robinson CV, Ruotolo BT. 2010. Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal Chem 82:9557–9565.
Cameron AE, Wichers E. 1962. Report of the International Commission on Atomic Weights (1961). J Am Chem Soc 84:4175–4197.
Campbell JL, Le Blanc JCY, Kibbey RG. 2015. Editorial: Differential mobility spectrometry: a valuable technology for analyzing challenging biological samples. Bioanalysis 7:853–856.
Campbell JL, Zhu M, Hopkins WS. 2014. Ion-molecule clustering in differential mobility spectrometry: lessons learned from tetraalkylammonium cations and their isomers. J Am Soc Mass Spectrom 25:1583–1591.
Campuzano I, Bush MF, Robinson CV, Beaumont C, Richardson K, Kim H, Kim HI. 2012. Structural characterization of drug-like compounds by ion mobility mass spectrometry: comparison of theoretical and experimentally derived nitrogen collision cross sections. Anal Chem 84:1026–1033.
Canterbury JD, Yi X, Hoopmann MR, MacCoss MJ. 2008. Assessing the dynamic range and peak capacity of nanoflow LC-FAIMS-MS on an ion trap mass spectrometer for proteomics. Anal Chem 80:6888–6897.
Canzani D, Laszlo KJ, Bush MF. 2018. Ion mobility of proteins in nitrogen gas: effects of charge state, charge distribution, and structure. J Phys Chem A 122:5625–5634.
Chai M, Young MN, Liu FC, Bleiholder C. 2018. A transferable, sample-independent calibration procedure for trapped ion mobility spectrometry (TIMS). Anal Chem 90:9040–9047.
Chen SH, Russell DH. 2015. How closely related are conformations of protein ions sampled by IM-MS to native solution structures? J Am Soc Mass Spectrom 26:1433–1443.
Chen YL, Collings BA, Douglas DJ. 1997. Collision cross sections of myoglobin and cytochrome c ions with Ne, Ar, and Kr. J Am Soc Mass Spectrom 8:681–687.
Chen Z, Glover MS, Li L. 2018. Recent advances in ion mobility-mass spectrometry for improved structural characterization of glycans and glycoconjugates. Curr Opin Chem Biol 42:1–8.
Clemmer DE, Hudgins RR, Jarrold MF. 1995. Naked protein conformations: cytochrome c in the gas phase. J Am Chem Soc 117:10141–10142.
Clemmer DE, Jarrold MF. 1997. Ion mobility measurements and their applications to clusters of biomolecules. J Mass Spectrom 32:577–592.
Cohen MJ, Karasek FW. 1970. Plasma chromatography™—A new dimension for gas chromatography and mass spectrometry. J Chromatogr Sci 8:330–337.
Counterman AE, Valentine SJ, Srebalus CA, Henderson SC, Hoaglund CS, Clemmer DE. 1998. High-order structure and dissociation of gaseous peptide aggregates that are hidden in mass spectra. J Am Soc Mass Spectrom 9:743–759.
Covey T, Douglas DJ. 1993. Collision cross sections for protein ions. J Am Soc Mass Spectrom 4:616–623.
Crawford CL, Hauck BC, Tufariello JA, Harden CS, McHugh V, Siems WF, Hill HH, Jr. 2012. Accurate and reproducible ion mobility measurements for chemical standard evaluation. Talanta 101:161–170.
Czerwinska I, Far J, Kune C, Larriba-Andaluz C, Delaude L, De Pauw E. 2016. Structural analysis of ruthenium-arene complexes using ion mobility mass spectrometry, collision-induced dissociation, and DFT. Dalton Trans 45:6361–6370.
Deng L, Webb IK, Garimella SVB, Hamid AM, Zheng X, Norheim RV, Prost SA, Anderson GA, Sandoval JA, Baker ES, Ibrahim YM, Smith RD. 2017. Serpentine ultralong path with extended routing (SUPER) high resolution traveling wave ion mobility-ms using structures for lossless ion manipulations. Anal Chem 89:4628–4634.
Dilger JM, Valentine SJ, Glover MS, Ewing MA, Clemmer DE. 2012. A database of alkali metal-containing peptide cross sections: Influence of metals on size parameters for specific amino acids. Int J Mass Spectrom 330-332:35–45.
Duez Q, Chirot F, Lienard R, Josse T, Choi C, Coulembier O, Dugourd P, Cornil J, Gerbaux P, De Winter J. 2017. Polymers for traveling wave ion mobility spectrometry calibration. J Am Soc Mass Spectrom 28:2483–2491.
Dugourd P, Hudgins RR, Clemmer DE, Jarrold MF. 1997. High-resolution ion mobility measurements. Rev Sci Instrum 68:1122–1129.
Dugourd P, Hudgins RR, Tenenbaum JM, Jarrold MF. 1998. Observation of new ring isomers for carbon cluster anions. Phys Rev Lett 80:4197–4200.
Dziekonski ET, Johnson JT, Lee KW, McLuckey SA. 2017. Determination of collision cross sections using a Fourier transform electrostatic linear ion trap mass spectrometer. J Am Soc Mass Spectrom 29:242–250.
EA. 2013. EA-4/02 M: 2013. Evaluation of the Uncertainty of Measurement in Calibration. Paris.
Eiceman GA, Karpas Z. 2005. Ion Mobility Spectrometry. Boca Raton, FL: CRC Press.
Eiceman GA, Stone JA. 2004. Ion mobility spectrometers in national defense. Anal Chem 76:390A–397A.
Elliott AG, Harper CC, Lin HW, Susa AC, Xia Z, Williams ER. 2017. Simultaneous measurements of mass and collisional cross-section of single ions with charge detection mass spectrometry. Anal Chem 89:7701–7708.
EURACHEM/CITAC. 2012. QUAM: 2012.P1: Quantifying Uncertainty in Analytical Measurement. https://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf
Ewing RG, Atkinson DA, Eiceman GA, Ewing GJ. 2001. A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54:515–529.
Far J, Delvaux C, Kune C, Eppe G, de Pauw E. 2014. The use of ion mobility mass spectrometry for isomer composition determination extracted from Se-rich yeast. Anal Chem 86:11246–11254.
Fenn LS, Kliman M, Mahsut A, Zhao SR, McLean JA. 2009. Characterizing ion mobility-mass spectrometry conformation space for the analysis of complex biological samples. Anal Bioanal Chem 394:235–244.
Fenn LS, McLean JA. 2008. Biomolecular structural separations by ion mobility-mass spectrometry. Anal Bioanal Chem 391:905–909.
Fernandez-Lima F, Kaplan DA, Suetering J, Park MA. 2011. Gas-phase separation using a trapped ion mobility spectrometer. Int J Ion Mobil Spectrom 14:93–98.
Fernandez de la Mora J, de Juan L, Eichler T, Rosell J. 1998. Differential mobility analysis of molecular ions and nanometer particles. Trends Anal Chem 17:328–339.
Forsythe JG, Petrov AS, Walker CA, Allen SJ, Pellissier JS, Bush MF, Hud NV, Fernandez FM. 2015. Collision cross section calibrants for negative ion mode traveling wave ion mobility-mass spectrometry. Analyst 140:6853–6861.
Gabelica V, Livet S, Rosu F. 2018. Optimizing Native Ion Mobility Q-TOF in Helium and Nitrogen for Very Fragile Noncovalent Structures. J Am Soc Mass Spectrom 29:2189–2198.
Gabelica V, Marklund E. 2018. Fundamentals of ion mobility spectrometry. Curr Opin Chem Biol 42:51–59.
Gelb AS, Jarratt RE, Huang Y, Dodds ED. 2014. A study of calibrant selection in measurement of carbohydrate and peptide ion-neutral collision cross sections by traveling wave ion mobility spectrometry. Anal Chem 86:11396–11402.
Gidden J, Bowers MT. 2002. Gas-phase conformational and energetic properties of deprotonated dinucleotides. Eur Phys J D 20:409–419.
Gilb S, Weis P, Furche F, Ahlrichs R, Kappes MM. 2002. Structures of small gold cluster cations (Aun+, n<14): Ion mobility measurements versus density functional calculations. J Chem Phys 116:4094–4101.
Giles K, Palmer M, Richardson K, Tomczyk N. 2015. Comparison of CCS(N2) measurements obtained from two different T-wave IMS systems with direct measurements using a drift tube IMS. Proc. 63th ASMS Conf., St. Louis M P 07–133.
Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH. 2004. Applications of a travelling wave-based radio-frequency only stacked ring ion guide. Rapid Commun Mass Spectrom 18:2401–2414.
Giles K, Wildgoose JL, Langridge DJ, Campuzano I. 2010. A method for direct measurement of ion mobilities using a travelling wave ion guide. Int J Mass Spectrom 298:10–16.
Giles K, Williams JP, Campuzano I. 2011. Enhancements in travelling wave ion mobility resolution. Rapid Commun Mass Spectrom 25:1559–1566.
Greisch J-F, Weis P, Brendle K, Kappes MM, Haler JRN, Far J, De Pauw E, Albers C, Bay S, Wurm T, Rudolph M, Schulmeister J, Hashmi ASK. 2018. Detection of intermediates in dual gold catalysis using high-resolution ion mobility mass spectrometry. Organometallics 37:1493–1500.
Guevremont R. 2004. High-field asymmetric waveform ion mobility spectrometry: A new tool for mass spectrometry. J Chromatogr A 1058:3–19.
Guevremont R, Barnett DA, Purves RW, Viehland LA. 2001. Calculation of ion mobilities from electrospray ionization high-field asymmetric waveform ion mobility spectrometry mass spectrometry. J Chem Phys 114:10270–10277.
Guevremont R, Purves R. 2005. Comparison of experimental and calculated peak shapes for three cylindrical geometry FAIMS prototypes of differing electrode diameters. J Am Soc Mass Spectrom 16:349–362.
Guevremont R, Purves RW. 1999. Atmospheric pressure ion focusing in a high-field asymmetric waveform ion mobility spectrometer. Rev Sci Instrum 70:1370–1383.
Haler JRN, Kune C, Massonnet P, Comby-Zerbino C, Jordens J, Honing M, Mengerink Y, Far J, De Pauw E. 2017. Comprehensive ion mobility calibration: poly(ethylene oxide) polymer calibrants and general strategies. Anal Chem 89:12076–12086.
Haler JRN, Massonnet P, Chirot F, Kune C, Comby-Zerbino C, Jordens J, Honing M, Mengerink Y, Far J, Dugourd P, De Pauw E. 2018. Comparison of different ion mobility setups using poly(ethylene oxide) PEO polymers: drift tube, TIMS, and T-Wave. J Am Soc Mass Spectrom 29:114–120.
Hamid AM, Prabhakaran A, Garimella SVB, Ibrahim YM, Smith RD. 2018. Characterization of applied fields for ion mobility separations in traveling wave based structures for lossless ion manipulations (SLIM). Int J Mass Spectrom 430:8–13.
Harvey SR, Macphee CE, Barran PE. 2011. Ion mobility mass spectrometry for peptide analysis. Methods 54:454–461.
Hauck BC, Siems WF, Harden CS, McHugh VM, Hill HH. 2017a. Construction and evaluation of a hermetically sealed accurate ion mobility instrument. Int J Ion Mobil Spectrom 20:57–66.
Hauck BC, Siems WF, Harden CS, McHugh VM, Hill HH, Jr. 2017b. Determination of E/N influence on K0 values within the low field region of ion mobility spectrometry. J Phys Chem A 121:2274–2281.
Hauck BC, Siems WF, Harden CS, McHugh VM, Hill HH, Jr. 2018. High accuracy ion mobility spectrometry for instrument calibration. Anal Chem 90:4578–4584.
Henderson SC, Li J, Counterman AE, Clemmer DE. 1999. Intrinsic size parameters for Val, Ile, Leu, Gln, Thr, Phe, and Trp residues from ion mobility measurements of polyamino acid ions. J Phys Chem B 103:8780–8785.
Henderson SC, Valentine SJ, Counterman AE, Clemmer DE. 1999. ESI/Ion trap/Ion mobility/time of flight mass spectrometry for rapid and sensitive analysis of biomolecular mixtures. Anal Chem 71:291–301.
Hernandez DR, Debord JD, Ridgeway ME, Kaplan DA, Park MA, Fernandez-Lima F. 2014. Ion dynamics in a trapped ion mobility spectrometer. Analyst 139:1913–1921.
Hines KM, Ross DH, Davidson KL, Bush MF, Xu L. 2017. Large-scale structural characterization of drug and drug-like compounds by high-throughput ion mobility-mass spectrometry. Anal Chem 89:9023–9030.
Hinz C, Liggi S, Griffin JL. 2018. The potential of ion mobility mass spectrometry for high-throughput and high-resolution lipidomics. Curr Opin Chem Biol 42:42–50.
Hoaglund CS, Liu Y, Ellington AD, Pagel M, Clemmer DE. 1997. Gas-phase DNA: oligothymidine ion conformers. J Am Chem Soc 119:9051–9052.
Hoaglund CS, Valentine SJ, Sporleder CR, Reilly JP, Clemmer DE. 1998. Three-dimensional ion mobility/TOFMS analysis of electrosprayed biomolecules. Anal Chem 70:2236–2242.
Hofmann J, Pagel K. 2017. Glycan analysis by ion mobility-mass spectrometry. Angew Chem Int Ed Engl 56:8342–8349.
Hogan CJ, Jr., Fernandez de la Mora J. 2009. Tandem ion mobility-mass spectrometry (IMS-MS) study of ion evaporation from ionic liquid-acetonitrile nanodrops. Phys Chem Chem Phys 11:8079–8090.
Hudgins RR, Imai M, Jarrold MF, Dugourd P. 1999. High-resolution ion mobility measurements for silicon cluster anions and cations. J Chem Phys 111:7865–7870.
Hupin S, Lavanant H, Renaudineau S, Proust A, Izzet G, Groessl M, Afonso C. 2018. A calibration framework for the determination of accurate collision cross sections of polyanions using polyoxometalate standards. Rapid Commun Mass Spectrom 32:1703–1710.
Ibrahim YM, Hamid AM, Deng L, Garimella SV, Webb IK, Baker ES, Smith RD. 2017. New frontiers for mass spectrometry based upon structures for lossless ion manipulations. Analyst 142:1010–1021.
IUPAC. 1997. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Oxford: Blackwell Scientific Publications.
Jarrold MF. 1999. Unfolding, refolding, and hydration of proteins in the gas phase. Acc Chem Res 32:360–367.
JCGM. 2008. 100:2008. GUM 1995 with minor corrections. Evaluation of measurement data—Guide to the expression of uncertainty in measurement: BIPM. https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
JCGM. 2012. 200:2012 International vocabulary of metrology—Basic and general concepts and associated terms (VIM): BIPM. https://www.bipm.org/en/publications/guides/vim.html
Jeanne Dit Fouque K, Afonso C, Zirah S, Hegemann JD, Zimmermann M, Marahiel MA, Rebuffat S, Lavanant H. 2015. Ion mobility-mass spectrometry of lasso peptides: signature of a rotaxane topology. Anal Chem 87:1166–1172.
Karpas Z, Berant Z, Shahal O. 1989. Effect of temperature on the mobility of ions. J Am Chem Soc 111:6015–6018.
Kaszycki JL, Baird MA, Shvartsburg AA. 2018. Molecular structure characterization by isotopic splitting in nonlinear ion mobility spectra. Anal Chem 90:669–673.
Kaszycki JL, Bowman AP, Shvartsburg AA. 2016. Ion mobility separation of peptide isotopomers. J Am Soc Mass Spectrom 27:795–799.
Kaur-Atwal G, O'Connor G, Aksenov AA, Bocos-Bintintan V, Paul Thomas CL, Creaser CS. 2009. Chemical standards for ion mobility spectrometry: a review. Int J Ion Mobil Spectrom 12:1–14.
Kemper PR, Dupuis NF, Bowers MT. 2009. A new, higher resolution, ion mobility mass spectrometer. Int J Mass Spectrom 287:46–57.
Kinnear BS, Hartings MR, Jarrold MF. 2001. Helix unfolding in unsolvated peptides. J Am Chem Soc 123:5660–5667.
Kinnear BS, Hartings MR, Jarrold MF. 2002. The energy landscape of unsolvated peptides: helix formation and cold denaturation in Ac-A4G7A4+H+. J Am Chem Soc 124:4422–4431.
Kirk AT, Raddatz CR, Zimmermann S. 2017. Separation of isotopologues in ultra-high-resolution ion mobility spectrometry. Anal Chem 89:1509–1515.
Konijnenberg A, Butterer A, Sobott F. 2013. Native ion mobility-mass spectrometry and related methods in structural biology. Biochim Biophys Acta 1834:1239–1256.
Krylov EV, Coy SL, Nazarov EG. 2009. Temperature effects in differential mobility spectrometry. Int J Mass Spectrom 279:119–125.
Krylova N, Krylov E, Eiceman GA, Stone JA. 2003. Effect of moisture on the field dependence of mobility for gas-phase ions of organophosphorus compounds at atmospheric pressure with field asymmetric ion mobility spectrometry. J Phys Chem A 107:3648–3654.
Kune C, Far J, De Pauw E. 2016. Accurate drift time determination by traveling wave ion mobility spectrometry: the concept of the diffusion calibration. Anal Chem 88:11639–11646.
Laszlo KJ, Munger EB, Bush MF. 2016. Folding of protein ions in the gas phase after cation-to-anion proton-transfer reactions. J Am Chem Soc 138:9581–9588.
Laszlo KJ, Munger EB, Bush MF. 2017. Effects of solution structure on the folding of lysozyme ions in the gas phase. J Phys Chem B 121:2759–2766.
Lavanant H, Tognetti V, Afonso C. 2014. Traveling wave ion mobility mass spectrometry and ab initio calculations of phosphoric acid clusters. J Am Soc Mass Spectrom 25:572–580.
Levin DS, Miller RA, Nazarov EG, Vouros P. 2006a. Rapid separation and quantitative analysis of peptides using a new nanoelectrospray-differential mobility spectrometer-mass spectrometer system. Anal Chem 78:5443–5452.
Levin DS, Vouros P, Miller RA, Nazarov EG, Morris JC. 2006b. Characterization of gas-phase molecular interactions on differential mobility ion behavior utilizing an electrospray ionization-differential mobility-mass spectrometer system. Anal Chem 78:96–106.
Li X, Chan YT, Casiano-Maldonado M, Yu J, Carri GA, Newkome GR, Wesdemiotis C. 2011. Separation and characterization of metallosupramolecular libraries by ion mobility mass spectrometry. Anal Chem 83:6667–6674.
Liko I, Allison TM, Hopper JT, Robinson CV. 2016. Mass spectrometry guided structural biology. Curr Opin Struct Biol 40:136–144.
Lippens JL, Ranganathan SV, D'Esposito RJ, Fabris D. 2016. Modular calibrant sets for the structural analysis of nucleic acids by ion mobility spectrometry mass spectrometry. Analyst 141:4084–4099.
Liu C, Le Blanc JC, Schneider BB, Shields J, Federico JJ, 3rd, Zhang H, Stroh JG, Kauffman GW, Kung DW, Ieritano C, Shepherdson E, Verbuyst M, Melo L, Hasan M, Naser D, Janiszewski JS, Hopkins WS, Campbell JL. 2017. Assessing physicochemical properties of drug molecules via microsolvation measurements with differential mobility spectrometry. ACS Cent Sci 3:101–109.
Liu C, Le Blanc JC, Shields J, Janiszewski JS, Ieritano C, Ye GF, Hawes GF, Hopkins WS, Campbell JL. 2015. Using differential mobility spectrometry to measure ion solvation: an examination of the roles of solvents and ionic structures in separating quinoline-based drugs. Analyst 140:6897–6903.
Liu FC, Kirk SR, Bleiholder C. 2016. On the structural denaturation of biological analytes in trapped ion mobility spectrometry − mass spectrometry. Analyst 141:3722–3730.
Liu FC, Ridgeway ME, Park MA, Bleiholder C. 2018. Tandem trapped ion mobility spectrometry. Analyst 143:2249–2258.
Mairinger T, Causon TJ, Hann S. 2018. The potential of ion mobility-mass spectrometry for non-targeted metabolomics. Curr Opin Chem Biol 42:9–15.
Mao Y, Woenckhaus J, Kolafa J, Ratner MA, Jarrold MF. 1999. Thermal unfolding of unsolvated cytochrome c: Experiment and molecular dynamics simulations. J Am Chem Soc 121:2712–2721.
Marchand A, Livet S, Rosu F, Gabelica V. 2017. Drift tube ion mobility: how to reconstruct collision cross section distributions from arrival time distributions? Anal Chem 89:12674–12681.
May JC, Dodds JN, Kurulugama RT, Stafford GC, Fjeldsted JC, McLean JA. 2015. Broadscale resolving power performance of a high precision uniform field ion mobility-mass spectrometer. Analyst 140:6824–6833.
May JC, Gant-Branum RL, McLean JA. 2016. Targeting the untargeted in molecular phenomics with structurally-selective ion mobility-mass spectrometry. Curr Opin Biotechnol 39:192–197.
May JC, McLean JA. 2015. Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem 87:1422–1436.
May JC, Morris CB, McLean JA. 2017. Ion mobility collision cross section compendium. Anal Chem 89:1032–1044.
May JC, Russell DH. 2011. A mass-selective variable-temperature drift tube ion mobility-mass spectrometer for temperature dependent ion mobility studies. J Am Soc Mass Spectrom 22:1134–1145.
McLean JA. 2009. The mass-mobility correlation redux: The conformational landscape of anhydrous biomolecules. J Am Soc Mass Spectrom 20:1775–1781.
McLean JA, Ruotolo BT, Gillig KJ, Russell DH. 2005. Ion mobility-mass spectrometry: a new paradigm for proteomics. Int J Mass Spectrom 240:301–315.
Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF. 1996. Structural information from ion mobility measurements: Effects of the long-range potential. J Phys Chem 100:16082–16086.
Michelmann K, Silveira JA, Ridgeway ME, Park MA. 2015. Fundamentals of trapped ion mobility spectrometry. J Am Soc Mass Spectrom 26:14–24.
Millikan RA. 1923. The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surfaces. Phys Rev 22:1–23.
Milton MJT, Quinn TJ. 2001. Primary methods for the measurement of amount of substance. Metrologia 38:289–296.
Mohr PJ, Newell DB, Taylor BN. 2016. CODATA Recommended Values of the Fundamental Physical Constants: 2014. J Phys Chem Ref Data 45:043102.
Molano-Arevalo JC, Jeanne Dit Fouque K, Pham K, Miksovska J, Ridgeway ME, Park MA, Fernandez-Lima F. 2017. Characterization of intramolecular interactions of cytochrome c using hydrogen-deuterium exchange-trapped ion mobility spectrometry-mass spectrometry and molecular dynamics. Anal Chem 89:8757–8765.
Mordehai A, Kurulugama RT, Darland E, Stafford GC, Fjeldsted J. Proc. 63th ASMS Conf., St Louis 2015 pp M 07-126.
Morrison KA, Clowers BH. 2018. Contemporary glycomic approaches using ion mobility-mass spectrometry. Curr Opin Chem Biol 42:119–129.
Morsa D, Defize T, Dehareng D, Jerome C, De Pauw E. 2014. Polymer topology revealed by ion mobility coupled with mass spectrometry. Anal Chem 86:9693–9700.
Morsa D, Gabelica V, De Pauw E. 2011. Effective temperature of ions in traveling wave ion mobility spectrometry. Anal Chem 83:5775–5782.
Morsa D, Gabelica V, De Pauw E. 2014. Fragmentation and isomerization due to field heating in traveling wave ion mobility spectrometry. J Am Soc Mass Spectrom 25:1384–1393.
Mortensen DN, Susa AC, Williams ER. 2017. Collisional cross-sections with T-wave ion mobility spectrometry without experimental calibration. J Am Soc Mass Spectrom 28:1282–1292.
Mullholland GW, Donnelly MK, Hagwood CR, Kukuck SR, Hackley VA. 2006. Measurement of 100nm and 60nm particle standards by differential mobility analysis. J Res Natl Inst Stand Technol 111:257–312.
Nazarov EG, Coy SL, Krylov EV, Miller RA, Eiceman GA. 2006. Pressure effects in differential mobility spectrometry. Anal Chem 78:7697–7706.
Pacholarz KJ, Barran PE. 2015. Distinguishing loss of structure from subunit dissociation for protein complexes with variable temperature ion mobility mass spectrometry. Anal Chem 87:6271–6279.
Politis A, Park AY, Hyung SJ, Barsky D, Ruotolo BT, Robinson CV. 2010. Integrating ion mobility mass spectrometry with molecular modelling to determine the architecture of multiprotein complexes. PLoS ONE 5:e12080.
Poyer S, Comby-Zerbino C, Choi CM, MacAleese L, Deo C, Bogliotti N, Xie J, Salpin JY, Dugourd P, Chirot F. 2017. Conformational dynamics in ion mobility data. Anal Chem 89:4230–4237.
Purves RW, Guevremont R, Day S, Pipich CW, Matyjaszczyk MS. 1998. Mass spectrometric characterization of a high-field asymmetric waveform ion mobility spectrometer. Rev Sci Instrum 69:4094–4105.
Quinn TJ. 1997. Primary methods of measurement and primary standards. Metrologia 34:61–65.
Reischl GP. 1991. Measurement of ambient aerosols by the differential mobility analyzer method: concepts and realization criteria for the size range between 2 and 500 nm. Aerosol Sci Technol 14:5–24.
Revercomb HE, Mason EA. 1975. Theory of plasma chromatography/gaseous electrophoresis−a review. Anal Chem 47:970–983.
Richardson K, Langridge D, Giles K. 2018. Fundamentals of travelling wave ion mobility revisited: I. Smoothly moving waves. Int J Mass Spectrom 428:71–80.
Robinson EW, Shvartsburg AA, Tang K, Smith RD. 2008. Control of ion distortion in field asymmetric waveform ion mobility spectrometry via variation of dispersion field and gas temperature. Anal Chem 80:7508–7515.
Rorrer LC, Yost RA. 2011. Solvent vapor effects on planar high-field asymmetric waveform ion mobility spectrometry. Int J Mass Spectrom 300:173–181.
Ruotolo BT, Benesch JL, Sandercock AM, Hyung SJ, Robinson CV. 2008. Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc 3:1139–1152.
Salbo R, Bush MF, Naver H, Campuzano I, Robinson CV, Pettersson I, Jorgensen TJ, Haselmann KF. 2012. Traveling-wave ion mobility mass spectrometry of protein complexes: accurate calibrated collision cross-sections of human insulin oligomers. Rapid Commun Mass Spectrom 26:1181–1193.
Sanders JD, Grinfeld D, Aizikov K, Makarov A, Holden DD, Brodbelt JS. 2018. Determination of collision cross-sections of protein ions in an orbitrap mass analyzer. Anal Chem 90:5896–5902.
Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG. 2010. Chemical effects in the separation process of a differential mobility/mass spectrometer system. Anal Chem 82:1867–1880.
Schneider BB, Nazarov EG, Londry F, Vouros P, Covey TR. 2016. Differential mobility spectrometry/mass spectrometry history, theory, design optimization, simulations, and applications. Mass Spectrom Rev 35:687–737.
Shelimov KB, Clemmer DE, Hudgins RR, Jarrold MF. 1997. Protein structure in vacuo: Gas-phase conformations of BPTI and Cytochromec. J Am Chem Soc 119:2240–2248.
Shvartsburg AA. 2009. Differential ion mobility spectrometry. Nonlinear ion transport and fundamentals of FAIMS. Boca Raton: CRC Press.
Shvartsburg AA, Clemmer DE, Smith RD. 2010. Isotopic effect on ion mobility and separation of lsotopomers by high-field ion mobility spectrometry. Anal Chem 82:8047–8051.
Shvartsburg AA, Haris A, Andrzejewski R, Entwistle A, Giles R. 2018. Differential ion mobility separations in the low-pressure regime. Anal Chem 90:936–943.
Shvartsburg AA, Ibrahim YM, Smith RD. 2014. Differential ion mobility separations in up to 100% helium using microchips. J Am Soc Mass Spectrom 25:480–489.
Shvartsburg AA, Li F, Tang K, Smith RD. 2006. High-resolution field asymmetric waveform ion mobility spectrometry using new planar geometry analyzers. Anal Chem 78:3706–3714.
Shvartsburg AA, Noskov SY, Purves RW, Smith RD. 2009. Pendular proteins in gases and new avenues for characterization of macromolecules by ion mobility spectrometry. Proc Natl Acad Sci USA 106:6495–6500.
Shvartsburg AA, Smith RD. 2008. Fundamentals of traveling wave ion mobility spectrometry. Anal Chem 80:9689–9699.
Shvartsburg AA, Smith RD, Wilks A, Koehl A, Ruiz-Alonso D, Boyle B. 2009. Ultrafast differential ion mobility spectrometry at extreme electric fields in multichannel microchips. Anal Chem 81:6489–6495.
Shvartsburg AA, Tang K, Smith RD. 2004. Modeling the resolution and sensitivity of FAIMS analyses. J Am Soc Mass Spectrom 15:1487–1498.
Shvartsburg AA, Tang K, Smith RD. 2004. Understanding and designing field asymmetric waveform ion mobility spectrometry separations in gas mixtures. Anal Chem 76:7366–7374.
Shvartsburg AA, Tang K, Smith RD. 2005. FAIMS operation for realistic gas flow profile and asymmetric waveforms including electronic noise and ripple. J Am Soc Mass Spectrom 16:1447–1455.
Shvartsburg AA, Tang K, Smith RD, Holden M, Rush M, Thompson A, Toutoungi D. 2009. Ultrafast differential ion mobility spectrometry at extreme electric fields coupled to mass spectrometry. Anal Chem 81:8048–8053.
Shvartsburg AA, Zheng Y, Smith RD, Kelleher NL. 2012. Ion mobility separation of variant histone tails extending to the “middle-down” range. Anal Chem 84:4271–4276.
Siems WF, Viehland LA, Hill HH. 2016. Correcting the fundamental ion mobility equation for field effects. Analyst 141:6396–6407.
Siems WF, Wu C, Tarver EE, Hill HH, Larsen PR, McMinn DG. 1994. Measuring the resolving power of ion mobility spectrometers. Anal Chem 66:4195–4201.
Silveira JA, Danielson W, Ridgeway ME, Park MA. 2016a. Altering the mobility-time continuum: nonlinear scan functions for targeted high resolution trapped ion mobility-mass spectrometry. Int J Ion Mobil Spectrom 19:87–94.
Silveira JA, Michelmann K, Ridgeway ME, Park MA. 2016b. Fundamentals of trapped ion mobility spectrometry part II: fluid dynamics. J Am Soc Mass Spectrom 27:585–595.
Silveira JA, Ridgeway ME, Park MA. 2014. High resolution trapped ion mobility spectrometery of peptides. Anal Chem 86:5624–5627.
Smith DP, Knapman TW, Campuzano I, Malham RW, Berryman JT, Radford SE, Ashcroft AE. 2009. Deciphering drift time measurements from travelling wave ion mobility spectrometry-mass spectrometry studies. Eur J Mass Spectrom 15:113–130.
Steill JD, Oomens J. 2009. Gas-phase deprotonation of p-hydroxybenzoic acid investigated by IR spectroscopy: solution-phase structure is retained upon ESI. J Am Chem Soc 131:13570–13571.
Stow SM, Causon TJ, Zheng X, Kurulugama RT, Mairinger T, May JC, Rennie EE, Baker ES, Smith RD, McLean JA, Hann S, Fjeldsted JC. 2017. An interlaboratory evaluation of drift tube ion mobility-mass spectrometry collision cross section measurements. Anal Chem 89:9048–9055.
Struwe WB, Agravat S, Aoki-Kinoshita KF, Campbell MP, Costello CE, Dell A, Ten F, Haslam SM, Karlsson NG, Khoo KH, Kolarich D, Liu Y, McBride R, Novotny MV, Packer NH, Paulson JC, Rapp E, Ranzinger R, Rudd PM, Smith DF, Tiemeyer M, Wells L, York WS, Zaia J, Kettner C. 2016. The minimum information required for a glycomics experiment (MIRAGE) project: sample preparation guidelines for reliable reporting of glycomics datasets. Glycobiology 26:907–910.
Surman AJ, Robbins PJ, Ujma J, Zheng Q, Barran PE, Cronin L. 2016. Sizing and discovery of nanosized polyoxometalate clusters by mass spectrometry. J Am Chem Soc 138:3824–3830.
Tang K, Li F, Shvartsburg AA, Strittmatter EF, Smith RD. 2005. Two-dimensional gas-phase separations coupled to mass spectrometry for analysis of complex mixtures. Anal Chem 77:6381–6388.
Taylor CF, Paton NW, Lilley KS, Binz P-A, Julian RK, Jr, Jones AR, Zhu W, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJR, Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD, Ping P, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR, Xenarios I, Yates Iii JR, Hermjakob H. 2007. The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25:887.
Taylor P, Kipphardt H, De Bièvre P. 2001. The definition of primary method of measurement (PMM) of the ‘highest metrological quality’: a challenge in understanding and communication. Accred Qual Assur 6:103–106.
Thalassinos K, Grabenauer M, Slade SE, Hilton GR, Bowers MT, Scrivens JH. 2009. Characterization of phosphorylated peptides using traveling wave-based and drift cell ion mobility mass spectrometry. Anal Chem 81:248–254.
Thalassinos K, Pandurangan AP, Xu M, Alber F, Topf M. 2013. Conformational States of macromolecular assemblies explored by integrative structure calculation. Structure 21:1500–1508.
Thompson JJ. 1912. Further experiments on positive rays. Philos Mag 24:209–253.
Tolmachev AV, Webb IK, Ibrahim YM, Garimella SV, Zhang X, Anderson GA, Smith RD. 2014. Characterization of ion dynamics in structures for lossless ion manipulations. Anal Chem 86:9162–9168.
Trimpin S, Clemmer DE. 2008. Ion mobility spectrometry/mass spectrometry snapshots for assessing the molecular compositions of complex polymeric systems. Anal Chem 80:9073–9083.
Ude S, Fernández de la Mora J. 2005. Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides. J Aerosol Sci 36:1224–1237.
Uetrecht C, Rose RJ, van Duijn E, Lorenzen K, Heck AJ. 2010. Ion mobility mass spectrometry of proteins and protein assemblies. Chem Soc Rev 39:1633–1655.
Ujma J, De Cecco M, Chepelin O, Levene H, Moffat C, Pike SJ, Lusby PJ, Barran PE. 2012. Shapes of supramolecular cages by ion mobility mass spectrometry. Chem Commun 48:4423–4425.
Ujma J, Giles K, Morris M, Barran PE. 2016. New high resolution ion mobility mass spectrometer capable of measurements of collision cross sections from 150 to 520K. Anal Chem 88:9469–9478.
Valentine SJ, Anderson JG, Ellington AD, Clemmer DE. 1997. Disulfide-intact and -reduced lysozyme in the gas phase: conformations and pathways of folding and unfolding. J Phys Chem B 101:3891–3900.
Valentine SJ, Clemmer DE. 2009. Treatise on the measurement of molecular masses with ion mobility spectrometry. Anal Chem 81:5876–5880.
Valentine SJ, Counterman AE, Clemmer DE. 1997. Conformer-dependant proton transfer reactions of ubiquitin ions. J Am Soc Mass Spectrom 8:954–961.
Valentine SJ, Counterman AE, Clemmer DE. 1999. A database of 660 peptide ion cross sections: use of intrinsic size parameters for bona fide predictions of cross sections. J Am Soc Mass Spectrom 10:1188–1211.
Valentine SJ, Counterman AE, Hoaglund CS, Reilly JP, Clemmer DE. 1998. Gas-phase separations of protease digests. J Am Soc Mass Spectrom 9:1213–1216.
Von Helden G, Hsu M-T, Gotts N, Bowers MT. 1993. Carbon cluster cations with up to 84 atoms: structures, formation mechanism, and reactivity. J Phys Chem 97:8182–8192.
von Helden G, Wyttenbach T, Bowers MT. 1995. Inclusion of a MALDI ion source in the ion chromatography technique: conformational information on polymer and biomolecular ions. Int J Mass Spectrom Ion Proc 146/147:349–364.
Warnke S, Seo J, Boschmans J, Sobott F, Scrivens JH, Bleiholder C, Bowers MT, Gewinner S, Schollkopf W, Pagel K, von Helden G. 2015. Protomers of benzocaine: solvent and permittivity dependence. J Am Chem Soc 137:4236–4242.
Warzok U, Marianski M, Hoffmann W, Turunen L, Rissanen K, Pagel K, Schalley CA. 2018. Surprising solvent-induced structural rearrangements in large [N•••I+•••N] halogen-bonded supramolecular capsules: an ion mobility-mass spectrometry study. Chem Sci 9:8343–8351.
Wesdemiotis C. 2017. Multidimensional mass spectrometry of synthetic polymers and advanced materials. Angew Chem Int Ed Engl 56:1452–1464.
Wildgoose J, Giles K, Pringle SD, Koeniger SL, Valentine SJ, Bateman R, Clemmer DE. 2006. A Comparison of Travelling Wave and Drift Tube Ion Mobility Separations. Proc. 54th ASMS Conf., Seattle ThP05 064.
Wollschlager JM, Simon K, Gaedke M, Schalley CA. 2018. Ion mobility and gas phase H/D exchange: revealing the importance of a single hydrogen bond for the chiral recognition of crown ether ammonium complexes. Chem Commun 54:4967–4970.
Wright VE, Castro-Gómez F, Jurneczko E, Reynolds JC, Poulton A, Christie SDR, Barran P, Bo C, Creaser CS. 2013. Structural studies of metal ligand complexes by ion mobility-mass spectrometry. Int J Ion Mobil Spectrom 16:61–67.
Wu C, Siems WF, Klasmeier J, Hill HH, Jr. 2000. Separation of isomeric peptides using electrospray ionization/high-resolution ion mobility spectrometry. Anal Chem 72:391–395.
Wyttenbach T, Bleiholder C, Bowers MT. 2013. Factors contributing to the collision cross section of polyatomic ions in the kilodalton to gigadalton range: application to ion mobility measurements. Anal Chem 85:2191–2199.
Wyttenbach T, Bowers MT. 2011. Structural stability from solution to the gas phase: native solution structure of ubiquitin survives analysis in a solvent-free ion mobility-mass spectrometry environment. J Phys Chem B 115:12266–12275.
Wyttenbach T, Bushnell JE, Bowers MT. 1998. Salt bridge structures in the absence of solvent? The case for the oligoglycines. J Am Chem Soc 120:5098–5103.
Wyttenbach T, Kemper PR, Bowers MT. 2001. Design of a new electrospray ion mobility mass spectrometer. Int J Mass Spectrom 212:13–23.
Wyttenbach T, Pierson NA, Clemmer DE, Bowers MT. 2014. Ion mobility analysis of molecular dynamics. Annu Rev Phys Chem 65:175–196.
Wyttenbach T, von Helden G, Batka JJ, Carlat D, Bowers MT. 1997. Effect of the long-range potential on ion mobility measurements. J Am Soc Mass Spectrom 8:275–282.
Wyttenbach T, Von Helden G, Bowers MT. 1996. Gas-phase conformation of biological molecules: bradykinin. J Am Chem Soc 118:8355–8364.
Xia H, Attygalle AB. 2016. Effect of electrospray ionization source conditions on the tautomer distribution of deprotonated p-hydroxybenzoic acid in the gas phase. Anal Chem 88:6035–6043.
Xia H, Attygalle AB. 2017. Untrapping kinetically trapped ions: the role of water vapor and ion-source activation conditions on the gas-phase protomer ratio of benzocaine revealed by ion-mobility mass spectrometry. J Am Soc Mass Spectrom 28:2580–2587.
Young MN, Bleiholder C. 2017. Molecular structures and momentum transfer cross sections: the influence of the analyte charge distribution. J Am Soc Mass Spectrom 28:619–627.
Zeleny J. 1898. Mobilities of the ions in gases as low pressures. Philos Mag 46:120–154.
Zhang S-H, Akutsu Y, Russell LM, Flagan RC, Seinfeld JH. 2007. Radial differential mobility analyzer. Aerosol Sci Technol 23:357–372.
Zhang X, Quinn K, Cruickshank-Quinn C, Reisdorph R, Reisdorph N. 2018. The application of ion mobility mass spectrometry to metabolomics. Curr Opin Chem Biol 42:60–66.
Zheng X, Smith RD, Baker ES. 2018. Recent advances in lipid separations and structural elucidation using mass spectrometry combined with ion mobility spectrometry, ion-molecule reactions and fragmentation approaches. Curr Opin Chem Biol 42:111–118.
Zheng X, Wojcik R, Zhang X, Ibrahim YM, Burnum-Johnson KE, Orton DJ, Monroe ME, Moore RJ, Smith RD, Baker ES. 2017. Coupling front-end separations, ion mobility spectrometry, and mass spectrometry for enhanced multidimensional biological and environmental analyses. Annu Rev Anal Chem 10:71–92.
Zhong Y, Hyung SJ, Ruotolo BT. 2011. Characterizing the resolution and accuracy of a second-generation traveling-wave ion mobility separator for biomolecular ions. Analyst 136:3534–3541.