[en] Ion mobility–mass spectrometry (IM-MS) experiments are mostly used hand in hand with computational chemistry to correlate mobility measurements to the shape of the ions. Recently, we developed an automatable method to fit IM data obtained with synthetic homopolymers (i.e., collision cross sections; CCS) without resorting to computational chemistry. Here, we further develop the experimental IM data interpretation to explore physicochemical properties of a series of nine polymers and their monomer units by monitoring the relationship between the CCS and the degree of polymerization (DP). Several remarkable points of the CCS evolutions as a function of the DP were found: the first observed DP of each charge state (ΔDPfirst DP), the DPs constituting the structural rearrangements (ΔDPrearr), and the DPs at the half-rearrangement (DPhalf-rearr). Given that these remarkable points do not rely on absolute CCS values, but on their relative evolution, they can be extracted from CCS or raw IM data without accurate IM calibration. Properties such as coordination numbers of the cations, steric hindrance, or side chain flexibility can be compared. This leads to fit parameter predictions based on the nature of the monomer unit. The interpretation of the fit parameters, extracted using solely experimental data, allows a rapid screening of the properties of the polymers.
Disciplines :
Chemistry
Author, co-author :
Haler, Jean ; Université de Liège - ULiège + LIST-Luxembourg > Département de chimie (sciences) + LIST Materials Research and Technology Department > Chimie analytique inorganique
Far, Johann ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
de la Rosa, Victor; Ghent University > Department of Organic and Macromolecular Chemistry > Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC)
Kune, Christopher ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Hoogenboom, Richard; Ghent University > Department of Organic and Macromolecular Chemistry > Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC)
De Pauw, Edwin ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Language :
English
Title :
Using Ion Mobility-Mass Spectrometry to Extract Physicochemical Enthalpic and Entropic Contributions from Synthetic Polymers
Publication date :
2021
Journal title :
Journal of the American Society for Mass Spectrometry
Breaux, G. A.; Jarrold, M. F. Probing helix formation in unsolvated peptides. J. Am. Chem. Soc. 2003, 125, 10740-10747, 10.1021/ja0300362
Bagal, D.; Valliere-Douglass, J. F.; Balland, A.; Schnier, P. D. Resolving disulfide structural isoforms of IgG2 monoclonal antibodies by ion mobility mass spectrometry. Anal. Chem. 2010, 82, 6751-6755, 10.1021/ac1013139
Han, L.; Ruotolo, B. T. Ion Mobility-Mass Spectrometry Differentiates Protein Quaternary Structures Formed in Solution and in Electrospray Droplets. Anal. Chem. 2015, 87, 6808-6813, 10.1021/acs.analchem.5b01010
Ruotolo, B. T.; Benesch, J. L. P.; Sandercock, A. M.; Hyung, S. J.; Robinson, C. V. Ion mobility-mass spectrometry analysis of large protein complexes. Nat. Protoc. 2008, 3, 1139-1152, 10.1038/nprot.2008.78
Ruotolo, B. T.; Gillig, K. J.; Stone, E. G.; Russell, D. H. Peak capacity of ion mobility mass spectrometry: Separation of peptides in helium buffer gas. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2002, 782, 385-392, 10.1016/S1570-0232(02)00566-4
Charles, L.; Chendo, C.; Poyer, S. Ion mobility spectrometry-Mass spectrometry coupling for synthetic polymers. Rapid Commun. Mass Spectrom. 2020, 34, 8624, 10.1002/rcm.8624
Foley, C. D.; Zhang, B.; Alb, A. M.; Trimpin, S.; Grayson, S. M. Use of Ion Mobility Spectrometry-Mass Spectrometry to Elucidate Architectural Dispersity within Star Polymers. ACS Macro Lett. 2015, 4, 778-782, 10.1021/acsmacrolett.5b00299
Hoskins, J. N.; Trimpin, S.; Grayson, S. M. Architectural differentiation of linear and cyclic polymeric isomers by ion mobility spectrometry-mass spectrometry. Macromolecules 2011, 44, 6915-6918, 10.1021/ma2012046
Morsa, D.; Defize, T.; Dehareng, D.; Jérôme, C.; De Pauw, E. Polymer topology revealed by ion mobility coupled with mass spectrometry. Anal. Chem. 2014, 86, 9693-9700, 10.1021/ac502246g
Kim, K.; Lee, J. W.; Chang, T.; Kim, H. I. Characterization of polylactides with different stereoregularity using electrospray ionization ion mobility mass spectrometry. J. Am. Soc. Mass Spectrom. 2014, 25, 1771-1779, 10.1007/s13361-014-0949-1
Fischer, H.; Polikarpov, I.; Craievich, A. F. Average protein density is a molecular-weight-dependent function. Protein Sci. 2004, 13, 2825-2828, 10.1110/ps.04688204
Trimpin, S.; Clemmer, D. E. Ion mobility spectrometry/mass spectrometry snapshots for assessing the molecular compositions of complex polymeric systems. Anal. Chem. 2008, 80, 9073-9083, 10.1021/ac801573n
Gidden, J.; Wyttenbach, T.; Batka, J. J.; Weis, P.; Jackson, A. T.; Scrivens, J. H.; Bowers, M. T. Poly (ethylene terephthalate) Oligomers Cationized by Alkali Ions: Structures, Energetics, and Their Effect on Mass Spectra and the Matrix-Assisted Laser Desorption/Ionization Process. J. Am. Soc. Mass Spectrom. 1999, 10, 883-895, 10.1016/S1044-0305(99)00054-9
Gidden, J.; Bowers, M. T.; Jackson, A. T.; Scrivens, J. H. Gas-phase conformations of cationized poly(styrene) oligomers. J. Am. Soc. Mass Spectrom. 2002, 13, 499-505, 10.1016/S1044-0305(02)00367-7
Gidden, J.; Wyttenbach, T.; Jackson, A. T.; Scrivens, J. H.; Bowers, M. T. Gas-Phase Conformations of Synthetic Polymers: Poly (ethylene glycol), Poly (propylene glycol), and Poly (tetramethylene glycol). J. Am. Chem. Soc. 2000, 122, 4692-4699, 10.1021/ja993096+
von Helden, G.; Wyttenbach, T.; Bowers, M. T. Inclusion of a MALDI ion source in the ion chromatography technique: Conformational information on polymer and biomolecular ions. Int. J. Mass Spectrom. Ion Processes 1995, 146-147, 349-364, 10.1016/0168-1176(95)04211-3
Wyttenbach, T.; von Helden, G.; Bowers, M. T. Conformations of alkali ion cationized polyethers in the gas phase: Polyethylene glycol and bis[(benzo-15-crown-5)-15-ylmethyl] pimelate. Int. J. Mass Spectrom. Ion Processes 1997, 165-166, 377-390, 10.1016/S0168-1176(97)00179-1
De Winter, J.; Lemaur, V.; Ballivian, R.; Chirot, F.; Coulembier, O.; Antoine, R.; Lemoine, J.; Cornil, J.; Dubois, P.; Dugourd, P.; Gerbaux, P. Size dependence of the folding of multiply charged sodium cationized polylactides revealed by ion mobility mass spectrometry and molecular modelling. Chem.-Eur. J. 2011, 17, 9738-9745, 10.1002/chem.201100383
Trimpin, S.; Plasencia, M.; Isailovic, D.; Clemmer, D. E. Resolving oligomers from fully grown polymers with IMS-MS. Anal. Chem. 2007, 79, 7965-7974, 10.1021/ac071575i
Larriba, C.; Fernandez De La Mora, J. The gas phase structure of coulombically stretched polyethylene glycol ions. J. Phys. Chem. B 2012, 116, 593-598, 10.1021/jp2092972
Haler, J. R. N.; Lemaur, V.; Far, J.; Kune, C.; Gerbaux, P.; Cornil, J.; De Pauw, E. Sodium Coordination and Protonation of Poly(ethoxy phosphate) Chains in the Gas Phase Probed by Ion Mobility-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2020, 31, 633-641, 10.1021/jasms.9b00079
Kokubo, S.; Vana, P. Easy Access to the Characteristic Ratio of Polymers Using Ion-Mobility Mass Spectrometry. Macromol. Chem. Phys. 2017, 218, 1600373, 10.1002/macp.201600373
Kokubo, S.; Vana, P. Obtaining the Dielectric Constant of Polymers from Doubly Charged Species in Ion-Mobility Mass Spectrometry. Macromol. Chem. Phys. 2017, 218, 1700126, 10.1002/macp.201700126
Haler, J. R. N.; Morsa, D.; Lecomte, P.; Jérôme, C.; Far, J.; De Pauw, E. Predicting Ion Mobility-Mass Spectrometry Trends of Polymers using the Concept of Apparent Densities. Methods 2018, 144, 125, 10.1016/j.ymeth.2018.03.010
Haler, J. R. N.; Béchet, E.; Far, J.; De Pauw, E. Geometric Analysis of Shapes in Ion Mobility-Mass Spectrometry. ChemRxiv.9758057.V1 2019, 1-32, 10.26434/CHEMRXIV.9758057.V1
Haler, J. R. N.; Massonnet, P.; Far, J.; Upert, G.; Gilles, N.; Mourier, G.; Quinton, L.; De Pauw, E. Can IM-MS Collision Cross-Sections of Biomolecules be Rationalized using Collision Cross-Section Trends of Polydisperse Synthetic Homopolymers?. J. Am. Soc. Mass Spectrom. 2020, 31, 990-995, 10.1021/jasms.9b00106
May, J. C.; Goodwin, C. R.; McLean, J. A. Ion mobility-mass spectrometry strategies for untargeted systems, synthetic, and chemical biology. Curr. Opin. Biotechnol. 2015, 31, 117-121, 10.1016/j.copbio.2014.10.012
Harris, R. A.; Leaptrot, K. L.; May, J. C.; McLean, J. A. New frontiers in lipidomics analyses using structurally selective ion mobility-mass spectrometry. TrAC, Trends Anal. Chem. 2019, 116, 316-323, 10.1016/j.trac.2019.03.031
Liechty, W. B.; Kryscio, D. R.; Slaughter, B. V.; Peppas, N. A. Polymers for Drug Delivery Systems. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 149-173, 10.1146/annurev-chembioeng-073009-100847
Vilar, G.; Tulla-Puche, J.; Albericio, F. Polymers and drug delivery systems. Curr. Drug Delivery 2012, 9, 367-394, 10.2174/156720112801323053
Clément, B. B.; Grignard, B.; Koole, L.; Jérôme, C.; Lecomte, P. Metal-free strategies for the synthesis of functional and well-defined polyphosphoesters. Macromolecules 2012, 45, 4476-4486, 10.1021/ma3004339
de la Rosa, V. R.; Tempelaar, S.; Dubois, P.; Hoogenboom, R.; Mespouille, L. Poly(2-ethyl-2-oxazoline)-block-polycarbonate block copolymers: From improved end-group control in poly(2-oxazoline)s to chain extension with aliphatic polycarbonate through a fully metal-free ring-opening polymerisation process. Polym. Chem. 2016, 7, 1559-1568, 10.1039/C5PY01913C
Demirel, A. L.; Tatar Güner, P.; Verbraeken, B.; Schlaad, H.; Schubert, U. S.; Hoogenboom, R. Revisiting the crystallization of poly(2-alkyl-2-oxazoline)s. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 721-729, 10.1002/polb.23967
Giles, K.; Williams, J. P.; Campuzano, I. Enhancements in travelling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 2011, 25, 1559-1566, 10.1002/rcm.5013
Mason, E. A.; McDaniel, E. W. Transport Properties of Ions in Gases; Wiley: New York, 1988.
Bleiholder, C.; Wyttenbach, T.; Bowers, M. T. A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (I). Int. J. Mass Spectrom. 2011, 308, 1-10, 10.1016/j.ijms.2011.06.014
Haler, J. R. N.; Far, J.; Aqil, A.; Claereboudt, J.; Tomczyk, N.; Giles, K.; Jérôme, C.; De Pauw, E. Multiple Gas-Phase Conformations of a Synthetic Linear Poly(acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2017, 28, 2492-2499, 10.1007/s13361-017-1769-x
Haler, J. R. N.; Massonnet, P.; Chirot, F.; Kune, C.; Comby-Zerbino, C.; Jordens, J.; Honing, M.; Mengerink, Y.; Far, J.; Dugourd, P.; De Pauw, E. Comparison of Different Ion Mobility Setups Using Poly (Ethylene Oxide) PEO Polymers: Drift Tube, TIMS, and T-Wave. J. Am. Soc. Mass Spectrom. 2018, 29, 114-120, 10.1007/s13361-017-1822-9
Kuhn, W. Über die Gestalt fadenförmiger Moleküle in Lösungen. Colloid Polym. Sci. 1934, 68, 2-15, 10.1007/BF01451681
Flory, P. J. Principles of Polymer Chemistry; Cornell Univ. Press, 1953.
Flory, P. J. Statistical Mechanics of Chain Molecules; John Wiley & Sons, Ltd, 1969.
Haler, J. R. N.; Morsa, D.; Far, J.; Jérôme, C.; De Pauw, E. Polymers as Model Systems To Understand Ion Mobility-Mass Spectrometry Structures in the Gas Phase, 280944, ThOH. Proceedings of the 64th ASMS Conference on Mass Spectrometry and Allied Topics, San Antionio, CA, June 5-9, 2016; ASMS, 2016.
Crescentini, T. M.; May, J. C.; McLean, J. A.; Hercules, D. M. Alkali metal cation adduct effect on polybutylene adipate oligomers: Ion mobility-mass spectrometry. Polymer 2019, 173, 58-65, 10.1016/j.polymer.2019.04.004
Ude, S.; Fernández De La Mora, J.; Thomson, B. A. Charge-induced unfolding of multiply charged polyethylene glycol ions. J. Am. Chem. Soc. 2004, 126, 12184-12190, 10.1021/ja0381306
Haler, J. R. N.; Kune, C.; Massonnet, P.; Comby-Zerbino, C.; Jordens, J.; Honing, M.; Mengerink, Y.; Far, J.; De Pauw, E. Comprehensive Ion Mobility Calibration: Poly(ethylene oxide) Polymer Calibrants and General Strategies. Anal. Chem. 2017, 89, 12076-12086, 10.1021/acs.analchem.7b02564
Maißer, A.; Premnath, V.; Ghosh, A.; Nguyen, T. A.; Attoui, M.; Hogan, C. J. Determination of gas phase protein ion densities via ion mobility analysis with charge reduction. Phys. Chem. Chem. Phys. 2011, 13, 21630, 10.1039/c1cp22127b