removal of Pb2+, Cd2+, Ni2+, and Cu2+; kinetic studies; dsorption onto cerium; carbon
Abstract :
[en] The equilibrium and kinetic studies of removal of Pb2+, Cd2+, Ni2+, and Cu2+ metal ions were carried out using activated carbon prepared from palm kernel shell and doped with CeO2 (Ce/AC). The obtained material carbon was characterized by XRD which showed some crystalline traces of CeO2, SEM displaying the porous texture with spherical pores and the determination of pH of point of zero charge (pHPZC) which was found to be equal to 6. The contact time and adsorbate were thoroughly investigated. The maximum adsorption depends inversely on the hydrated metal radius. This observation was confirmed by calculating the formation energies (ΔH(M(OH)2)) of M(OH)2. The metal ionic radii were acting on calculated sorption capacity and that sorption efficiency related to ionic radii of metal was as follows: R(Ni2+) ≤ R(Cd2+) < R(Cu2+) < R(Pb2+). The texture and morphology of the material after sorption were affected by the metallic ion nature as observed by SEM. The kinetic studies showed that the rate constant (k2) of pseudo-second-order model decreased with the increase of the hydrated cations radii, while the rate constant of intraparticle diffusion increased with the increase of the ionic radii. The Freundlich isotherm model best fit the experimental sorption data for all the metallic ions.
Aharoni, C., & Ungarish, M. (1976). Kinetics of activated chemisorption. Part 1.—The non-elovichian part of the isotherm. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 72, 400–408. 10.1039/F19767200400
Alhooshani, K. R. (2019). Adsorption of chlorinated organic compounds from water with cerium oxide-activated carbon composite. Arabian Journal of Chemistry, 12(8), 2585–2596. DOI: 10.1016/j.arabjc.2015.04.013
Ali, I., Dahiya, S., & Tabrez, K. H. A. N. (2012). Removal of direct red 81 dye from aqueous solution by native and citric acid modified bamboo sawdust-kinetic study and equilibrium isotherm analyses. Gazi University Journal of Science, 25(1), 59–87.
Almeida, C. A. P., Debacher, N. A., Downs, A. J., Cottet, L., & Mello, C. A. D. (2009). Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. Journal of Colloïd and Interface Science, 332(1), 46–53. 10.1016/j.jcis.2008.12.012 DOI: 10.1016/j.jcis.2008.12.012
Amin, M., Alazba, A., & Shafiq, M. (2015). Adsorptive removal of reactive black 5 from wastewater using bentonite clay: Isotherms, kinetics and thermodynamics. Sustainability, 7(11), 15302–15318. 10.3390/su71115302 DOI: 10.3390/su71115302
Atkins, P. (1970). Physical Chemistry. Oxford University Press.
Bansal, R. C., & Goyal, M. (2005). Activated carbon adsorption. CRC Press. DOI: 10.1201/9781420028812
Başar, C. A. (2006). Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. Journal of Hazardous Materials, 135(1–3), 232–241. 10.1016/j.jhazmat.2005.11.055 DOI: 10.1016/j.jhazmat.2005.11.055
Boadu, K. O., Joel, O. F., Essumang, D. K., & Evbuomwan, B. O. (2018). Comparative studies of the physicochemical properties and heavy metals adsorption capacity of chemical activated carbon from palm kernel, coconut and groundnut shells. Journal of Applied Sciences and Environmental Management, 22(11), 1833–1839. 10.4314/jasem.v22i11.19 DOI: 10.4314/jasem.v22i11.19
Budinova, T. K., Petrov, N. V., Minkova, V. N., & Gergova, K. M. (1994). Removal of metal ions from aqueous solution by activated carbons obtained from different raw materials. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 60(2), 177–182. 10.1002/jctb.280600210 DOI: 10.1002/jctb.280600210
Cassini, A. S., Marczak, L. D. F., & Noreña, C. P. Z. (2006). Water adsorption isotherms of texturized soy protein. Journal of Food Engineering, 77(1), 194–199. 10.1016/j.jfoodeng.2005.05.059 DOI: 10.1016/j.jfoodeng.2005.05.059
Chen, S. B., Ma, Y. B., Chen, L., & Xian, K. (2010). Adsorption of aqueous Cd2+, Pb2+, Cu2+ ions by nano-hydroxyapatite: Single and multi-metal competitive adsorption study. Geochemical Journal, 44(3), 233–239. 10.2343/geochemj.1.0065 DOI: 10.2343/geochemj.1.0065
Dąbrowski, A. (2001). Adsorption—From theory to practice. Advances in Colloid and Interface Science, 93(1–3), 135–224. 10.1016/S0001-8686(00)00082-8 DOI: 10.1016/S0001-8686(00)00082-8
Dada, A. O., Adekola, F. A., & Odebunmi, E. O. (2017). Kinetics, mechanism, isotherm and thermodynamic studies of liquid phase adsorption of Pb2+ onto wood activated carbon supported zerovalent iron (WAC-ZVI) nanocomposite. Cogent Chemistry, 3(1), 1351653. 10.1080/23312009.2017.1351653 DOI: 10.1080/23312009.2017.1351653
Denaix, L., Lamy, I., & Bottero, J. Y. (1999). Structure and affinity towards Cd2+, Cu2+, Pb2+ of synthetic colloidal amorphous aluminosilicates and their precursors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 158(3), 315–325. 10.1016/S0927-7757(99)00096-5 DOI: 10.1016/S0927-7757(99)00096-5
Elhussein, E. A. A., Şahin, S., & Bayazit, Ş. S. (2018). Preparation of CeO2 nanofibers derived from Ce-BTC metal-organic frameworks and its application on pesticide adsorption. Journal of Molecular Liquids, 255, 10–17. DOI: 10.1016/j.molliq.2018.01.165
Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. 10.1016/j.cej.2009.09.013 DOI: 10.1016/j.cej.2009.09.013
Ghalit, M., Gharibi, E., Taupin, J. D., Yousfi, E. B., & Zarrouk, A. (2015). Nutritional contribution in trace elements of bottled water in Morocco. Der Pharmacia Lettre, 7, 202–211.
Gin, W. A., Jimoh, A., Abdulkareem, A. S., & Giwa, A. (2014). Production of activated carbon from watermelon peel. Int. J. Scient. Eng. Res, 5, 66–71.
Goldberg, S. (2005). Equations and models describing adsorption processes in soils. Chemical Processes in Soils, 8, 489–517. 10.2136/sssabookser8.c10 DOI: 10.2136/sssabookser8.c10
Goscianska, J., Marciniak, M., & Pietrzak, R. (2015). Ordered mesoporous carbons modified with cerium as effective adsorbents for azo dyes removal. Separation and Purification Technology, 154, 236–245. 10.1016/j.seppur.2015.09.042 DOI: 10.1016/j.seppur.2015.09.042
Gupta, V. K., Rastogi, A., Dwivedi, M. K., & Mohan, D. (1997). Process development for the removal of zinc and cadmium from wastewater using slag—A blast furnace waste material. Separation Science and Technology, 32(17), 2883–2912. 10.1080/01496399708002227 DOI: 10.1080/01496399708002227
Hamoud, H. I. (2015). Réactivité de catalyseurs à base de cérium pour l’oxydation catalytique des colorants textiles en procédé Fenton/photo Fenton (Doctoral dissertation, Université de Lorraine).
Han, F. X., Banin, A., Su, Y., Monts, D. L., Plodinec, J. M., Kingery, W. L., & Triplett, G. E. (2002). Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften, 89(11), 497–504. 10.1007/s00114-002-0373-4. DOI: 10.1007/s00114-002-0373-4
Hao, L., Huiping, D., & Jun, S. (2012). Activated carbon and cerium supported on activated carbon applied to the catalytic ozonation of polycyclic aromatic hydrocarbons. Journal of Molecular Catalysis A: Chemical, 363, 101–107. 10.1016/j.molcata.2012.05.022 DOI: 10.1016/j.molcata.2012.05.022
Hashem, A., Badawy, S. M., Farag, S., Mohamed, L. A., Fletcher, A. J., & Taha, G. M. (2020). Non-linear adsorption characteristics of modified pine wood sawdust optimised for adsorption of Cd (II) from aqueous systems. Journal of Environmental Chemical Engineering, 8(4), 103966. 10.1016/j.jece.2020.103966 DOI: 10.1016/j.jece.2020.103966
Hegazi, H. A. (2013). Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC Journal, 9(3), 276–282. 10.1016/j.hbrcj.2013.08.004 DOI: 10.1016/j.hbrcj.2013.08.004
Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136(3), 681–689. 10.1016/j.jhazmat.2005.12.043 DOI: 10.1016/j.jhazmat.2005.12.043
Ho, Y. S., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Trans IChemE, 76(4), 332–340. DOI: 10.1205/095758298529696
Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465. 10.1016/S0032-9592(98)00112-5 DOI: 10.1016/S0032-9592(98)00112-5
Jia, Y. F., & Y. F., Xiao, B., & Thomas, K. M. (2002). Adsorption of metal ions on nitrogen surface functional groups in activated carbons. Langmuir, 18(2), 470–478. 10.1021/la011161z DOI: 10.1021/la011161z
Kavand, M., Eslami, P., & Razeh, L. (2020). The adsorption of cadmium and lead ions from the synthesis wastewater with the activated carbon: Optimization of the single and binary systems. Journal of Water Process Engineering, 34, 101151. 10.1016/j.jwpe.2020.101151 DOI: 10.1016/j.jwpe.2020.101151
Khan, T. A., Dahiya, S., & Ali, I. (2012). Removal of direct red 81 dye from aqueous solution by native and citric acid modified bamboo sawdust-kinetic study and equilibrium isotherm analyses. Gazi University Journal of Science, 25(1).
Ko, D. C., Cheung, C. W., Choy, K. K., Porter, J. F., & McKay, G. (2004). Sorption equilibria of metal ions on bone char. Chemosphere, 54(3), 273–281. 10.1016/j.chemosphere.2003.08.004 DOI: 10.1016/j.chemosphere.2003.08.004
Kouotou, D., Blin, J., Ngomo, H. M., Ndi, J. N., Belibi, P. B., & Ketcha, J. M. (2017). Mechanisms involved in the removal of phenolic compounds from aqueous solution using activated carbons based palm kernels shells. Journal of Applicable Chemistry, 6(5), 799–807.
Kouotou, D., Manga, H. N., Baçaoui, A., Yaacoubi, A., Mbadcam, J. K. (2012). Optimization of activated carbons prepared by and steam activation of oil palm shells. Journal of Chemistry, 2013 10.1155/2013/654343
Kouotou, D., Ngomo Manga, H., Baçaoui, A., Yaacoubi, A., & Ketcha Mbadcam, J. (2013). Physicochemical activation of oil palm shells using response surface methodology: Optimization of activated carbons preparation. International Journal of Current Research, 5(3), 431–438.
Kubilay, Ş, Gürkan, R., Savran, A., & Şahan, T. (2007). Removal of Cu (II), Zn (II) and Co (II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption, 13(1), 41–51. 10.1007/s10450-007-9003-y DOI: 10.1007/s10450-007-9003-y
Lahaye, L., & Ehrburger, P. (Eds.). (2012). Fundamental issues in control of carbon gasification reactivity (Vol. 192). Springer Science & Business Media.
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403. 10.1021/ja02242a004 DOI: 10.1021/ja02242a004
Lee, D. H., & Moon, H. (2001). Adsorption equilibrium of heavy metals on natural zeolites. Korean Journal of Chemical Engineering, 18(2), 247–256. 10.1007/BF02698467 DOI: 10.1007/BF02698467
Lékéné, R. B. N., Nsami, J. N., Rauf, A., Kouotou, D., Belibi, P. D. B., Bhanger, M. I., & Mbadcam, J. K. (2018). Optimization conditions of the preparation of activated carbon based Egusi (Cucumeropsis mannii Naudin) seed shells for nitrate ions removal from wastewater. American Journal of Analytical Chemistry, 9(10), 439. 10.4236/ajac.2018.910034 DOI: 10.4236/ajac.2018.910034
Li, L., Ye, W., Zhang, Q., Sun, F., Lu, P., & Li, X. (2009). Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon. Journal of Hazardous Materials, 170(1), 411–416. 10.1016/j.jhazmat.2009.04.081 DOI: 10.1016/j.jhazmat.2009.04.081
Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85). CRC press.
Miquel, G. (2001). Report on the effects of heavy metals on the environment and health. document No. 2979 of the National Assembly and No. 261 of the French Senate. Parliamentary Office for the Evaluation of Scientific and Technological Choices.
Mitic-Stojanovic, D. L., Zarubica, A., Purenovic, M., Bojic, D., Andjelkovic, T., & Bojic, A. L. (2011). Biosorptive removal of Pb 2+, Cd 2+ and Zn 2+ ions from water by agenaria vulgaris shell. Water Sa, 37(3). https://doi.org/10.4314/wsa.v37i3.68481
Mobasherpour, I., Salahi, E., & Pazouki, M. (2012). Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: Adsorption isotherm study. Arabian Journal of Chemistry, 5(4), 439–446. 10.1016/j.arabjc.2010.12.022 DOI: 10.1016/j.arabjc.2010.12.022
Mohan, S. V., & Karthikeyan, J. (1997). Removal of lignin and tannin colour from aqueous solution by adsorption onto activated charcoal. Environmental Pollution, 97(1–2), 183–187. 10.1016/S0269-7491(97)00025-0 DOI: 10.1016/S0269-7491(97)00025-0
Mondal, S., Purkait, M. K., & De, S. (2018). Adsorption of dyes. In Advances in Dye Removal Technologies (pp. 49–98). Springer, Singapore. https://doi.org/10.1007/978-981-10-6293-3_2.
Moreno-Castilla, C. (2004). Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 42(1), 83–94. 10.1016/j.carbon.2003.09.022 DOI: 10.1016/j.carbon.2003.09.022
Moreno-Castilla, C., Álvarez-Merino, M. A., Pastrana-Martínez, L. M., & López-Ramón, M. V. (2010). Adsorption mechanisms of metal cations from water on an oxidized carbon surface. Journal of Colloid and Interface Science, 345(2), 461–466. 10.1016/j.jcis.2010.01.062 DOI: 10.1016/j.jcis.2010.01.062
Nightingale Jr, E. R. (1959). Phenomenological theory of ion solvation. Effective radii of hydrated ions. The Journal of Physical Chemistry, 63(9), 1381–1387. 10.1021/j150579a011
Oursel, B. (2013). Transferts et dynamique des contaminants métalliques en zone côtière: Impact d’une grande agglomération méditerranéenne (Doctoral dissertation, Université de Toulon).
Pastrana-Martínez, L. M., López-Ramón, M. V., Fontecha-Cámara, M. A., & Moreno-Castilla, C. (2010). Batch and column adsorption of herbicide fluroxypyr on different types of activated carbons from water with varied degrees of hardness and alkalinity. Water Research, 44(3), 879–885. 10.1016/j.watres.2009.09.053 DOI: 10.1016/j.watres.2009.09.053
Qu, J. E., Zhou, S., Wang, H., Cao, Z., & Liu, H. (2017). The application of an activated carbon supported Cu-Ce/Ac oxide anode on the electrocatalytic degradation of phenol. Int. J. Electrochem. Sci, 12, 9640–9651. https://doi.org/10.20964/2017.10.09
Rengaraj, S., Yeon, J. W., Kim, Y., Jung, Y., Ha, Y. K., & Kim, W. H. (2007). Adsorption characteristics of Cu (II) onto ion exchange resins 252H and 1500H: Kinetics, isotherms and error analysis. Journal of Hazardous Materials, 143(1–2), 469–477. 10.1016/j.jhazmat.2006.09.064 DOI: 10.1016/j.jhazmat.2006.09.064
Savova, D., Petrov, N., Yardim, M. F., Ekinci, E., Budinova, T., Razvigorova, M., & Minkova, V. (2003). The influence of the texture and surface properties of carbon adsorbents obtained from biomass products on the adsorption of manganese ions from aqueous solution. Carbon, 41(10), 1897–1903. 10.1016/S0008-6223(03)00179-9 DOI: 10.1016/S0008-6223(03)00179-9
Serrano-Ruiz, J. C., Ramos-Fernández, E. V., Silvestre-Albero, J., Sepúlveda-Escribano, A., & Rodríguez-Reinoso, F. (2008). Preparation and characterization of CeO2 highly dispersed on activated carbon. Materials Research Bulletin, 43(7), 1850–1857. 10.1016/j.materresbull.2007.07.001 DOI: 10.1016/j.materresbull.2007.07.001
Shen, W., Zheng, J., Qin, Z., & Wang, J. (2003). Preparation of mesoporous carbon from commercial activated carbon with steam activation in the presence of cerium oxide. Journal of Colloid and Interface Science, 264(2), 467–473. 10.1016/S0021-9797(03)00376-X DOI: 10.1016/S0021-9797(03)00376-X
Song, M., Wei, Y., Cai, S., Yu, L., Zhong, Z., & Jin, B. (2018). Study on adsorption properties and mechanism of Pb2+ with different carbon based adsorbents. Science of the Total Environment, 618, 1416–1422. DOI: 10.1016/j.scitotenv.2017.09.268
Spahn, H., & Schlünder, E. U. (1975). The scale-up of activated carbon columns for water purification, based on results from batch tests—I: Theoretical and experimental determination of adsorption rates of single organic solutes in batch tests. Chemical Engineering Science, 30(5–6), 529–537. 10.1016/0009-2509(75)80023-6 DOI: 10.1016/0009-2509(75)80023-6
Tahir, H., Hammed, U., Sultan, M., & Jahanzeb, Q. (2010). Batch adsorption technique for the removal of malachite green and fast green dyes by using montmorillonite clay as adsorbent. African Journal of Biotechnology, 9(48), 8206–8214. 10.5897/AJB10.911 DOI: 10.5897/AJB10.911
Tamai, H., Kakii, T., Hirota, Y., Kumamoto, T., & Yasuda, H. (1996). Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules. Chemistry of Materials, 8(2), 454–462. 10.1021/cm950381t DOI: 10.1021/cm950381t
Tempkin, M. I., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochimica USSR, 12(1), 327.
Tomita, A., Higashiyama, K., & Tamai, Y. (1981). Scanning electron microscopic study on the catalytic gasification of coal. Fuel, 60(2), 103–114. 10.1016/0016-2361(81)90003-X DOI: 10.1016/0016-2361(81)90003-X
Trovarelli, A., de Leitenburg, C., Boaro, M., & Dolcetti, G. (1999). The utilization of ceria in industrial catalysis. Catalysis Today, 50(2), 353–367. 10.1016/S0920-5861(98)00515-X DOI: 10.1016/S0920-5861(98)00515-X
Tseng, R. L., Wu, F. C., & Juang, R. S. (2010). Characteristics and applications of the Lagergren’s first-order equation for adsorption kinetics. Journal of the Taiwan Institute of Chemical Engineers, 41(6), 661–669. 10.1016/j.jtice.2010.01.014 DOI: 10.1016/j.jtice.2010.01.014
Vodrias, E., Fytianos, F., & Bozani, E. (2002). Sorption description isotherms of dyes from aqueous solutions and waste waters with different sorbent materials. Global Nest. the Int. J, 4(1), 75–78.
Wulfsberg, G. (1991). Principles of descriptive inorganic chemistry. University Science Books.
Yu, Y., Zhang, C., Yang, L., & Chen, J. P. (2017). Cerium oxide modified activated carbon as an efficient and effective adsorbent for rapid uptake of arsenate and arsenite: Material development and study of performance and mechanisms. Chemical Engineering Journal, 315, 630–638. 10.1016/j.cej.2016.09.068 DOI: 10.1016/j.cej.2016.09.068
Yuh-Shan, H. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1), 171–177. 10.1023/b:scie.0000013305.99473.cf DOI: 10.1023/b:scie.0000013305.99473.cf