Pupin, M.; Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Lille, F-59000, France, Inria-Lille Nord Europe, Bonsai Team, Villeneuve d’Ascq Cedex, F-59655, France
Flissi, A.; Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Lille, F-59000, France, Inria-Lille Nord Europe, Bonsai Team, Villeneuve d’Ascq Cedex, F-59655, France
Jacques, Philippe ; Université de Liège - ULiège > Département GxABT > Microbial, food and biobased technologies
Leclère, V.; Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, EA 7394-ICV- Institut Charles Viollette, Lille, F-59000, France
Language :
English
Title :
Bioinformatics tools for the discovery of new lipopeptides with biocontrol applications
Balibar, C. J., Vaillancourt, F. H., & Walsh, C. T. (2005). Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. Chemistry & Biology, 12, 1189–1200. 10.1016/j.chembiol.2005.08.010
Béchet, M., Castéra-Guy, J., Guez, J.-S., et al. (2013). Production of a novel mixture of mycosubtilins by mutants of Bacillus subtilis. Bioresource Technology, 145, 264–270. 10.1016/j.biortech.2013.03.123
Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7, 249–260
Biggins, J. B., Kang, H.-S., Ternei, M. A., et al. (2014). The chemical arsenal of Burkholderia pseudomallei is essential for pathogenicity. Journal of American Chemical Societies, 136, 9484–9490. 10.1021/ja504617n
Blin, K., Medema, M. H., Kazempour, D., et al. (2013). antiSMASH 2.0—A versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Research, 41, W204–W212. 10.1093/nar/gkt449
Blin, K., Kim, H. U., Medema, M. H., & Weber, T. (2017). Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief Bioinformatics. 10.1093/bib/bbx146
Bloudoff, K., & Schmeing, T. M. (2017). Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: Discovery, dissection and diversity. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1865, 1587–1604. 10.1016/j.bbapap.2017.05.010
Caboche, S., Pupin, M., Leclère, V., et al. (2008). NORINE: A database of nonribosomal peptides. Nucleic Acids Research, 36, D326–D331
Caradec, T., Pupin, M., Vanvlassenbroeck, A., et al. (2014). Prediction of monomer isomery in Florine: A workflow dedicated to nonribosomal peptide discovery. PLoS One, 9, e85667. 10.1371/journal.pone.0085667
Chevrette, M. G., Aicheler, F., Kohlbacher, O., et al. (2017). SANDPUMA: Ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity across Actinobacteria. Bioinformatics, 33, 3202–3210. 10.1093/bioinformatics/btx400
Chowdhury, S. P., Hartmann, A., Gao, X., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – A review. Frontiers in Microbiology, 6. 10.3389/fmicb.2015.00780
D’aes, J., Kieu, N. P., Leclère, V., et al. (2014). To settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol strain Pseudomonas CMR12a. Environmental Microbiology, 16, 2282–2300. 10.1111/1462-2920.12462
de Bruijn, I., de Kock, M. J. D., Yang, M., et al. (2007). Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Molecular Microbiology, 63, 417–428. 10.1111/j.1365-2958.2006.05525.x
Esmaeel, Q., Pupin, M., Kieu, N. P., et al. (2016). Burkholderia genome mining for nonribosomal peptide synthetases reveals a great potential for novel siderophores and lipopeptides synthesis. MicrobiologyOpen, 5, 512–526. 10.1002/mbo3.347
Flissi, A., Dufresne, Y., Michalik, J., et al. (2016). Norine, the knowledgebase dedicated to non-ribosomal peptides, is now open to crowdsourcing. Nucleic Acids Research, 44, D1113–D1118. 10.1093/nar/gkv1143
Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96, 190–194. 10.1094/PHYTO-96-0190
Leclère, V., Béchet, M., Adam, A., et al. (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71, 4577–4584. 10.1128/AEM.71.8.4577-4584.2005
Leclère, V., Marti, R., Béchet, M., et al. (2006). The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Archives in Microbiology, 186, 475–483. 10.1007/s00203-006-0163-z
Ma, Z., Ongena, M., & Höfte, M. (2017). The cyclic lipopeptide orfamide induces systemic resistance in rice to Cochliobolus miyabeanus but not to Magnaporthe oryzae. Plant Cell Reports, 36, 1731–1746. 10.1007/s00299-017-2187-z
Martínez Núñez, M. A., & López y Lopez, V. E. L. (2016). Nonribosomal peptides synthetases and their applications in industry. Sustain Chemistry Process, 4, 13. 10.1186/s40508-016-0057-6
Medema, M. H., Blin, K., Cimermancic, P., et al. (2011). antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Research, 39, W339–W346. 10.1093/nar/gkr466
Mihalache, G., Balaes, T., Gostin, I., et al. (2017). Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants. Environmental Sciences and Pollution Research, 1–10. 10.1007/s11356-017-9162-7
Mnif, I., & Ghribi, D. (2015). Microbial derived surface active compounds: Properties and screening concept. World Journal of Microbiology Biotechnology, 31, 1001–1020. 10.1007/s11274-015-1866-6
Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115–125. 10.1016/j.tim.2007.12.009
Raaijmakers, J. M., de Bruijn, I., & de Kock, M. J. D. (2006). Cyclic lipopeptide production by plant-associated Pseudomonas spp.: Diversity, activity, biosynthesis, and regulation. Molecular Plant-Microbe Interactions, 19, 699–710. 10.1094/MPMI-19-0699
Raaijmakers, J. M., de Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiological Reviews, 34, 1037–1062. 10.1111/j.1574-6976.2010.00221.x
Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in Physiology, 8, 667. 10.3389/fphys.2017.00667
Rausch, C., Hoof, I., Weber, T., et al. (2007). Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evolutionary Biology, 7, 78. 10.1186/1471-2148-7-78
Rokni-Zadeh, H., Mangas-Losada, A., & Mot, R. D. (2011). PCR detection of novel non-ribosomal peptide synthetase genes in lipopeptide-producing Pseudomonas. Microbial Ecology, 62, 941. 10.1007/s00248-011-9885-9
Roongsawang, N., Washio, K., & Morikawa, M. (2011). Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. International Journal of Molecular Science, 12, 141–172. 10.3390/ijms12010141
Röttig, M., Medema, M. H., Blin, K., et al. (2011). NRPSpredictor2—A web server for predicting NRPS adenylation domain specificity. Nucleic Acids Research, 39, W362–W367. 10.1093/nar/gkr323
Royer, M., Koebnik, R., Marguerettaz, M., et al. (2013). Genome mining reveals the genus Xanthomonas to be a promising reservoir for new bioactive non-ribosomally synthesized peptides. BMC Genomics, 14, 658. 10.1186/1471-2164-14-658
Strieker, M., Tanović, A., & Marahiel, M. A. (2010). Nonribosomal peptide synthetases: Structures and dynamics. Current Opinion in Structural Biology, 20, 234–240. 10.1016/j.sbi.2010.01.009
Tapi, A., Chollet-Imbert, M., Scherens, B., & Jacques, P. (2010). New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Applied Microbiology Biotechnology, 85, 1521–1531. 10.1007/s00253-009-2176-4
Weber, T., Blin, K., Duddela, S., et al. (2015). antiSMASH 3.0—A comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Research, 43, W237–W243. 10.1093/nar/gkv437
Weller, D. M. (2007). Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology, 97, 250–256. 10.1094/PHYTO-97-2-0250
Ziemert, N., Podell, S., Penn, K., et al. (2012). The natural product domain seeker NaPDoS: A phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One, 7, e34064. 10.1371/journal.pone.0034064