Yaseen, Y.; Université de Lille, INRA, Université d’Artois, Université du Littoral-Côte d’Opale, EA 7394 – ICV-Institut Charles Viollette, Lille, France
Diop, A.; Université de Lille, INRA, Université d’Artois, Université du Littoral-Côte d’Opale, EA 7394 – ICV-Institut Charles Viollette, Lille, France
Gancel, F.; Université de Lille, INRA, Université d’Artois, Université du Littoral-Côte d’Opale, EA 7394 – ICV-Institut Charles Viollette, Lille, France
Béchet, M.; Université de Lille, INRA, Université d’Artois, Université du Littoral-Côte d’Opale, EA 7394 – ICV-Institut Charles Viollette, Lille, France
Jacques, Philippe ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbial, food and biobased technologies
Drider, D.; Université de Lille, INRA, Université d’Artois, Université du Littoral-Côte d’Opale, EA 7394 – ICV-Institut Charles Viollette, Lille, France
Language :
English
Title :
Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis
Allenby NE, O’Connor N, Prágai Z, Ward AC, Wipat A, Harwood CR (2005) Genome-wide transcriptional analysis of the phosphate starvation stimulon of Bacillus subtilis. J Bacteriol 187:8063–8080
Béchet M, Castéra-Guy J, Guez JS, Chihib NE, Coucheney F, Coutte F, Leclère V, Wathelet B, Jacques P (2013) Production of a novel mixture of mycosubtilins by mutants of Bacillus subtilis. Bioresour Technol 145:264–270
Beltramo C, Desroche N, Tourdot-Maréchal R, Grandvalet C, Guzzo J (2006) Real-time PCR for characterizing the stress response of Oenococcus oeni in a wine-like medium. Res Microbiol 157:267–274
Briani F, Carzaniga T, Deho G (2016) Regulations and functions of bacterial PNPase. Wiley Interdiscip Rev RNA 7:241–258
Cao G, Zhang X, Zhong L, Lu Z (2011) A modified electro-transformation method for Bacillus subtilis and its application in the production of antimicrobial lipopeptides. Biotechnol Lett 33:1047–1051
Cardenas P, Carrasco B, Sanchez H, Deikus G, Bechhofer H, Alonso JC (2009) Bacillus subtilis polynucleotide phosphorylase 3′-to-5′ DNase activity is involved in DNA repair. Nucleic Acids Res 37(12):4157–4169
Ceresa C, Rinaldi M, Chiono V, Carmagnola I, Allegrone G, Fracchia L (2016) Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Antonie Van Leeuwenhoek 109:1375–1388
Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Strittmater A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnol 25:1007–1014
Cheng W, Feng YQ, Ren J, Jing D, Wang C (2016) Anti-tumor role of Bacillus subtilis fmbJ-derived fengycin on human colon cancer HT29 cell line. Neoplasma 63:215–222
Commichau FM, Rothe FM, Herzberg C, Wagner E, Hellwig D, Lehnik-Habrink M et al (2009) Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing. MolCell Proteom 8:1350–1360
Coutte F, Lecouturier D, Yahia SA, Leclère V, Béchet M, Jacques P, Dhulster P (2010) Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Appl Microbiol Biotechnol 87:499–507
Dhali D (2016) Correlation between lipopeptides biosynthesis and their precursor metabolism in Bacillus subtilis. PhD Thesis, Lille1 University, France
Duitman EH, Wyczawski D, Boven LG, Venema G, Kuipers OP, Hamoen LW (2007) Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl Environ Microbiol 73:3490–3496
Fahim S, Dimitrov K, Gancel F, Vauchel P, Jacques P, Nikov I (2012) Impact of energy supply and oxygen transfer on selective lipopeptide production by Bacillus subtilis BBG21. Bioresour Technol 126:1–6
Galli G, Rodriguez F, Cosmina P, Pratesi C, Nogarotto R, de Ferra F, Grandi G (1994) Characterization of the surfactin synthetase multi-enzyme complex. Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol 1205:19–28
Gamba P, Jonker MJ, Hamoen LW (2015) A novel feedback loop that controls bimodal expression of genetic competence. PLoS Genet 11:e1005047
Hamoen W, Eshuis H, Jongbloed J, Venema G, Sinderen D (1995) A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol Microbiol 15:55–63
Hussein W (2011) Study on the regulation and biosynthesis of fengycin and plipastatin produced by Bacillus subtilis. PhD Thesis, Lille1 University, France
Iatsenko I, Yim JJ, Schroeder FC, Sommer RJ (2014) B. subtilis GS67 protects C. elegans from Gram-positive pathogens via fengycin-mediated microbial antagonism. Curr Biol 24:2720–2727
Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. In: Soberon-Chavez G (ed) Biosurfactants microbiology monographs, vol 20. Springer, Berlin, pp 57–91
Kakiuchi N, Fukui T, Ikehara M (1979) Polynucleotides. LVII. Synthesis and properties of poly (2′chloro-2′-deoxyinosinic acid). Nucleic Acid Res 6:2627–2636
Karatas Y, Çetin S, Özcengiz G (2003) The effects of insertional mutations in comQ, comP. srfA, spo0H, spo0A and abrB genes on bacilysin biosynthesis in Bacillus subtilis. Biochim Biophys Acta (BBA) Gene Struct Express 1626:51–56
Kim I, Ryu J, Kim H, ChI YT (2010) Production of biosurfactant lipopeptides iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20:138–145
Landy M, Warren GH, Rosenman SB, Colio LG (1948) Bacillomycin an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol Med 67:530–541
Lee K, Yoon D, Yoon H, Lee G, Song J, Kim G, Kim S (2007) Cloning of srfA operon from Bacillus subtilis C9 and its expression in E. coli. Appl Microbiol Biotechnol 7:567–572
Liu L, Nakano M, Lee H, Zuber P (1996) Plasmid-amplified comS enhances genetic competence and suppresses sinR in Bacillus subtilis. J Bacteriol 178:5144–5152
Liu B, Deikus G, Bree A, Durand S, Kearns B, Bechhofer DH (2014) Global analysis of mRNA decay intermediates in Bacillus subtilis wild-type and polynucleotide phosphorylase-deletion strains. Mol Microbiol 94:41–55
Liu B, Daniel B, David H (2016) Expression of multiple Bacillus subtilis genes is controlled by decay of slrA mRNA from Rho-dependent 3′ ends. Nucleic Acids Res 44(7):3364–3372
Luttinger A, Hahn J, Dubnau D (1996) Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Mol Microbiol 19:343–356
Nakano M, Zuber P (1991) The primary role of ComA in establishment of the competent state in Bacillus subtilis is to activate expression of srfA. J Bacteriol 173:7269–7274
Nakano MM, Magnuson R, Myers A, Curry J, Grossman AD, Zuber P (1991) srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol 173:1770–1778
Ogura M, Yamaguchi H, Kobayashi K, Ogasawara N, Fujita Y, Tanaka T (2002) Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol 184:2344–2351
Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny L, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090
Pfaffl MW (2004) Quantification strategies in real-time polymerase chain reaction. In: Bustin SA (ed) A–Z of quantitative PCR, IUL biotechnology Series. International University Lines, La Jolla, pp 87–120
Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T, Kanaya S (2002) Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles 6:499–506
Roongsawang N, Washio K, Morikawa M (2010) Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. IntJ Mol Sci 12:141–172
Salvo E, Alabi S, Liu B, Schlessinger A, Bechhofer DH (2016) Interaction of Bacillus subtilis polynucleotide phosphorylase and RNase Y: structural mapping and effect on mRNA turnover. J Biol Chem 291(13):6655–6663
Sambrook J, Russell DW (2001). Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York
Schultz D, Wolynes G, Jacob B, Onuchic N (2009) Deciding fate in adverse times: sporulation and competence in Bacillus subtilis. Proc Natl Acad Sci (USA) 106:21027–21034
Sinchaikul S, Sookkheo B, Topanuruk S, Juan HF, Phutrakul S, Chen ST (2002) Bioinformatics, functional genomics, and proteomics study of Bacillus sp. J Chromatog B 771:261–287
Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857
Steller S, Vollenbroich D, Leenders F, Stein T, Conrad B, Hofemeister J, Vater J (1999) Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6:31–41
Tang Q, Bie X, Lu Z, Lv F, Tao Y, Qu X (2014) Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer. J Microbiol 52:675–680
Tsuge K, Ano T, Hirai M, Nakamura Y, Shoda M (1999) The genes degQ. pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob Agents Chemother 43:2183–2192
Yaseen Y, Gancel F, Drider D, Béchet M, Jacques P (2016) Influence of promoters on the production of fengycin in Bacillus spp. Res Microbiol 176:272–281
Zeriouh H, Vicente A, Pérez-García A, Romero D (2014) Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ Microbiol 16:2196–2211
Zhao J, Zhang C, Lu J, Lu Z (2016) Enhancement of fengycin production in Bacillus amyloliquefaciens by genome shuffling and relative gene expression analysis using RT-PCR. Can J Microbiol 62:431–436