Jacques, Philippe ; Université de Liège - ULiège > Département GxABT > Microbial, food and biobased technologies
Coutte, F.; Université de Lille, UMRt BioEcoAgro 1158-INRAE, équipe Métabolites Secondaires d’origine Microbienne, Institut Charles Viollette, Lille, France, Lipofabrik, Polytech-Lille, Cité Scientifique, Villeneuve d’Ascq, France
Language :
English
Title :
New Continuous Process for the Production of Lipopeptide Biosurfactants in Foam Overflowing Bioreactor
Publication date :
2021
Journal title :
Frontiers in Bioengineering and Biotechnology
eISSN :
2296-4185
Publisher :
Frontiers Media S.A.
Volume :
9
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Région Hauts-de-France EU - European Union
Funding text :
H2020 - 849713 - Lipofabarik - A ground-breaking biomolecular production platform for safer, more efficient and sustainable pest control and crop health management
Alonso S., Martin P. J., (2016). Impact of foaming on surfactin production by Bacillus subtilis: implications on the development of integrated in situ foam fractionation removal systems. Biochem. Eng. J. 110 125–133. 10.1016/j.bej.2016.02.006
Béchet M., Castéra-Guy J., Guez J.-S., Chihib N.-E., Coucheney F., Coutte F., et al. (2013). Production of a novel mixture of mycosubtilins by mutants of Bacillus subtilis. Bioresour. Technol. 145 264–270. 10.1016/j.biortech.2013.03.123 23583475
Beltran-Gracia E., Macedo-Raygoza G., Villafaña-Rojas J., Martinez-Rodriguez A., Chavez-Castrillon Y. Y., Espinosa-Escalante F. M., et al. (2017). “Production of Lipopeptides by Fermentation Processes: endophytic Bacteria, Fermentation Strategies and Easy Methods for Bacterial Selection,” in Fermentation Processes, ed. Jozala A. F., (London: IntechOpen), 199–222. 10.5772/64236
Besson F., Michel G., (1987). Isolation and characterization of new iturins: iturin D and iturin E. J. Antibiot. 40 437–442. 10.7164/antibiotics.40.437 3583913
Biniarz P., Henkel M., Hausmann R., Łukaszewicz M., (2020). Development of a Bioprocess for the Production of Cyclic Lipopeptides Pseudofactins With Efficient Purification From Collected Foam. Front. Bioeng. Biotechnol. 8:565619. 10.3389/fbioe.2020.565619 33330412
Chen C.-Y., Baker S. C., Darton R. C., (2006). Continuous production of biosurfactant with foam fractionation. J. Chem. Technol. Biotechnol. 81 1915–1922. 10.1002/jctb.1624
Chenikher S., Guez J. S., Coutte F., Pekpe M., Jacques P., Cassar J. P., (2010). Control of the specific growth rate of Bacillus subtilis for the production of biosurfactant lipopeptides in bioreactors with foam overflow. Process Biochem. 45 1800–1807.
Clark J. B., (1981). In situ microbial enhancement of oil production. Dev. Ind. Microbiol. 22 695–701.
Cosby W. M., Vollenbroich D., Lee O. H., Zuber P., (1998). Altered srf Expression in Bacillus subtilis Resulting from Changes in Culture pH Is Dependent on the Spo0K Oligopeptide Permease and the ComQX System of Extracellular Control. J. Bacteriol. 180 1438–1445.
Coutte F., Lecouturier D., Dimitrov K., Guez J.-S., Delvigne F., Dhulster P., et al. (2017). Microbial lipopeptide production and purification bioprocesses, current progress and future challenges. Biotechnol. J. 12:1600566. 10.1002/biot.201600566 28636078
Coutte F., Lecouturier D., Leclère V., Béchet M., Jacques P., Dhulster P., (2013). New integrated bioprocess for the continuous production, extraction and purification of lipopeptides produced by Bacillus subtilis in membrane bioreactor. Process Biochem. 48 25–32. 10.1016/j.procbio.2012.10.005
Coutte F., Niehren J., Dhali D., John M., Versari C., Jacques P., (2015). Modeling leucine’s metabolic pathway and knockout prediction improving the production of surfactin, a biosurfactant from Bacillus subtilis. Biotechnol. J. 10 1216–1234. 10.1002/biot.201400541 26220295
Dang Y., Zhao F., Liu X., Fan X., Huang R., Gao W., et al. (2019). Enhanced production of antifungal lipopeptide iturin A by Bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization. Microbial Cell Factories 18:68. 10.1186/s12934-019-1121-1 30971238
Das K., Mukherjee A. K., (2007). Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour. Technol. 98 1339–1345. 10.1016/j.biortech.2006.05.032 16828284
Davis D. A., Lynch H. C., Varley J., (2001). The application of foaming for the recovery of Surfactin from B. subtilis ATCC 21332 cultures. Enzyme Microb. Technol. 28 346–354. 10.1016/S0141-0229(00)00327-6
Deravel J., Lemière S., Coutte F., Krier F., Van Hese N., Béchet M., et al. (2014). Mycosubtilin and surfactin are efficient, low ecotoxicity molecules for the biocontrol of lettuce downy mildew. Appl. Microbiol. Biotechnol. 98 6255–6264. 10.1007/s00253-014-5663-1 24723290
Desmyttere H., Deweer C., Muchembled J., Sahmer K., Jacquin J., Coutte F., et al. (2019). Antifungal Activities of Bacillus subtilis Lipopeptides to Two Venturia inaequalis Strains Possessing Different Tebuconazole Sensitivity. Front. Microbiol. 10:2327. 10.3389/fmicb.2019.02327 31695685
Duitman E. H., Hamoen L. W., Rembold M., Venema G., Seitz H., Saenger W., et al. (1999). The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc. Natl. Acad. Sci. U. S. A. 96 13294–13299. 10.1073/pnas.96.23.13294 10557314
Duitman E. H., Wyczawski D., Boven L. G., Venema G., Kuipers O. P., Hamoen L. W., (2007). Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl. Environ. Microbiol. 73 3490–3496. 10.1128/AEM.02751-06 17416694
Fahim S., Dimitrov K., Gancel F., Vauchel P., Jacques P., Nikov I., (2012). Impact of energy supply and oxygen transfer on selective lipopeptide production by Bacillus subtilis BBG21. Bioresour. Technol. 126 1–6. 10.1016/j.biortech.2012.09.019 23073082
Farace G., Fernandez O., Jacquens L., Coutte F., Krier F., Jacques P., et al. (2015). Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol. Plant Pathol. 16 177–187. 10.1111/mpp.12170 25040001
Fickers P., Guez J.-S., Damblon C., Leclère V., Béchet M., Jacques P., et al. (2009). High-level biosynthesis of the anteiso-C17 isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity. Appl. Environ. Microbiol. 75 4636–4640.
Fickers P., Leclère V., Guez J.-S., Béchet M., Coucheney F., Joris B., et al. (2008). Temperature dependence of mycosubtilin homologue production in Bacillus subtilis ATCC6633. Res. Microbiol. 159 449–457.
Fischbach M. A., Walsh C. T., (2006). Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106 3468–3496. 10.1021/cr0503097 16895337
Gong G., Zhiming Z., Chen H., Yuan C., Wang P., Yao L., et al. (2009). Enhanced Production of Surfactin by Bacillus subtilis E8 Mutant Obtained by Ion Beam Implantation. Food Technol. Biotechnol. 47:27.
Grangemard I., Wallach J., Peypoux F., (1999). Evidence of surfactin hydrolysis by a bacterial endoprotease. Biotechnol. Lett. 21 241–244. 10.1023/A:1005444717166
Guez J. S., Chenikher S., Cassar J. P., Jacques P., (2007). Setting up and modelling of overflowing fed-batch cultures of Bacillus subtilis for the production and continuous removal of lipopeptides. J. Biotechnol. 131 67–75.
Guez J. S., Müller C. H., Danze P. M., Büchs J., Jacques P., (2008). Respiration activity monitoring system (RAMOS), an efficient tool to study the influence of the oxygen transfer rate on the synthesis of lipopeptide by Bacillus subtilis ATCC6633. J. Biotechnol. 134 121–126.
Hoefler B., Gorzelnik K., Yang J., Hendricks N., Dorrestein P., Straight P., (2012). Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition. Proc. Natl. Acad. Sci. U. S. A. 109 13082–13087. 10.1073/pnas.1205586109 22826229
Inès M., Dhouha G., (2015). Lipopeptide surfactants: production, recovery and pore forming capacity. Peptides 71 100–112. 10.1016/j.peptides.2015.07.006 26189973
Jacques P., (2011). “Surfactin and other lipopeptides from Bacillus spp,” in Biosurfactants, ed. Soberón-Chávez G., (Berlin: Springer), 57–91.
Keynan A., Strecker H. J., Waelsch H., (1954). GLUTAMINE, GLUTAMIC ACID, AND GLYCOLYSIS IN BACILLUS SUBTILIS. J. Biol. Chem. 211 883–891. 10.1016/S0021-9258(18)71176-9
Kourmentza K., Gromada X., Michael N., Degraeve C., Vanier G., Ravallec R., et al. (2021). Antimicrobial Activity of Lipopeptide Biosurfactants Against Foodborne Pathogen and Food Spoilage Microorganisms and Their Cytotoxicity. Front. Microbiol. 11:561060. 10.3389/fmicb.2020.561060 33505362
Landy M., Warren G. H., RosenmanM S. B., Colio L. G., (1948). Bacillomycin: an Antibiotic from Bacillus subtilis Active against Pathogenic Fungi. Proc. Soc. Exp. Biol. Med. 67 539–541. 10.3181/00379727-67-16367 18860010
Leclere V., Béchet M., Adam A., Guez J.-S., Wathelet B., Ongena M., et al. (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl. Environ. Microbiol. 71 4577–4584.
Lee B.-S., Kim E.-K., (2004). Lipopeptide production from Bacillus sp. GB16 using a novel oxygenation method. Enzyme Microb. Technol. 35 639–647. 10.1016/j.enzmictec.2004.08.017
Marti M. E., Colonna W. J., Reznik G., Pynn M., Jarrell K., Lamsal B., et al. (2015). Production of fatty-acyl-glutamate biosurfactant by Bacillus subtilis on soybean co-products. Biochem. Eng. J. 95 48–55. 10.1016/j.bej.2014.11.011
Mejri S., Siah A., Coutte F., Magnin-Robert M., Randoux B., Tisserant B., et al. (2018). Biocontrol of the wheat pathogen Zymoseptoria tritici using cyclic lipopeptides from Bacillus subtilis. Environ. Sci. Pollut. Res. Int. 25 29822–29833. 10.1007/s11356-017-9241-9 28634804
Mihalache G., Balaes T., Gostin I., Stefan M., Coutte F., Krier F., (2018). Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants. Environ. Sci. Pollut. Res. 25 29784–29793. 10.1007/s11356-017-9162-7 28528498
Mizumoto S., Shoda M., (2007). Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Appl. Microbiol. Biotechnol. 76 101–108. 10.1007/s00253-007-0994-9 17476498
Mnif I., Ghribi D., (2015). Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Pept. Sci. 104 129–147. 10.1002/bip.22630 25808118
Nakano M. M., Marahiel M. A., Zuber P., (1988). Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J. Bacteriol. 170 5662–5668. 10.1128/jb.170.12.5662-5668.1988 2848009
Ongena M., Jacques P., (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16 115–125. 10.1016/j.tim.2007.12.009 18289856
Peypoux F., Besson F., Michel G., Delcambe L., (1981). Structure of bacillomycin D, a new antibiotic of the iturin group. Eur. J. Biochem. 118 323–327. 10.1111/j.1432-1033.1981.tb06405.x 7285926
Peypoux F., Pommier M. T., Marion D., Ptak M., Das B. C., Michel G., (1986). Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J. Antibiot. 39 636–641. 10.7164/antibiotics.39.636 3089996
Pirt S. J., Kurowski W. M., (1970). An Extension of the Theory of the Chemostat with Feedback of Organisms. Its Experimental Realization with a Yeast Culture. Microbiology 63 357–366. 10.1099/00221287-63-3-357 5516438
Razafindralambo H., Popineau Y., Deleu M., Hbid C., Jacques P., Thonart P., et al. (1998). Foaming Properties of Lipopeptides Produced by Bacillus subtilis: Effect of Lipid and Peptide Structural Attributes. J. Agric. Food Chem. 46 911–916. 10.1021/jf970592d
Rodríguez-Monroy M., (1996). Effect of the dilution rate on the biomass yield ofBacillus thuringiensis and determination of its rate coefficients under steady-state conditions. Appl. Microbiol. Biotechnol. 45 546–550. 10.1007/BF00578469
Saint-Jalmes A., Peugeot M.-L., Ferraz H., Langevin D., (2005). Differences between protein and surfactant foams: microscopic properties, stability and coarsening. Colloids Surf. A Physicochem. Eng. Asp. 263 219–225. 10.1016/j.colsurfa.2005.02.002
Sandrin C., Peypoux F., Michel G., (1990). Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis. Biotechnol. Appl. Biochem. 12 370–375. 10.1111/j.1470-8744.1990.tb00109.x
Sattely E. S., Fischbach M. A., Walsh C. T., (2008). Total biosynthesis: in vitro reconstitution of polyketide and nonribosomal peptide pathways. Nat. Prod. Rep. 25 757–793. 10.1039/B801747F 18663394
Vilarino A., Frey B., Shüepp H., (1997). MES [2-(N-morpholine)-ethane sulphonic acid] buffer promotes the growth of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices in an alkaline sand. Biol. Fertil. Soils 25 79–81. 10.1007/s003740050284
Walton R. B., Woodruff H. B., (1949). A crystalline antifungal agent, mycosubtilin, isolated from subtilin broth. J. Clin. Invest. 28 924–926. 10.1172/JCI102180 16695764
Wang Q., Chen S., Zhang J., Sun M., Liu Z., Yu Z., (2008). Co-producing lipopeptides and poly-γ-glutamic acid by solid-state fermentation of Bacillus subtilis using soybean and sweet potato residues and its biocontrol and fertilizer synergistic effects. Bioresour. Technol. 99 3318–3323. 10.1016/j.biortech.2007.05.052 17681465
Willenbacher J., Zwick M., Mohr T., Schmid F., Syldatk C., Hausmann R., (2014). Evaluation of different Bacillus strains in respect of their ability to produce Surfactin in a model fermentation process with integrated foam fractionation. Appl. Microbiol. Biotechnol. 98 9623–9632. 10.1007/s00253-014-6010-2 25158834
Winterburn J. B., Russell A. B., Martin P. J., (2011). Integrated recirculating foam fractionation for the continuous recovery of biosurfactant from fermenters. Biochem. Eng. J. 54 132–139. 10.1016/j.bej.2011.02.011
Wu Q., Zhi Y., Xu Y., (2019). Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Metab. Eng. 52 87–97. 10.1016/j.ymben.2018.11.004 30453038
Xu Y., Cai D., Zhang H., Gao L., Yang Y., Gao J., et al. (2020). Enhanced production of iturin A in Bacillus amyloliquefaciens by genetic engineering and medium optimization. Process Biochem. 90 50–57. 10.1016/j.procbio.2019.11.017
Yeh M.-S., Wei Y.-H., Chang J.-S., (2006). Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochem. 41 1799–1805. 10.1016/j.procbio.2006.03.027
Zhang D., Dong K., Xu D., Zheng H., Wu Z., Xu X., (2015). Process improvement for fermentation coupling with foam separation: a convenient strategy for cell recycle. Asia Pac. J. Chem. Eng. 10 466–475. 10.1002/apj.1893