[en] Different plastic types considered as compostable are found on the market such as petro-based (e.g., polybutylene adipate terephthalate (PBAT)) or bio-based plastics (e.g., polylactic acid, (PLA)). Even if their degradation has been confirmed in industrial compost conditions, investigation of their degradation in natural marine environ- ment has been limited. To better understand biodegradation into natural marine environment, commercial compostable (PBAT, semi-crystalline and amorphous PLA) and non-compostable polymers (low density poly- ethylene, polystyrene, polyethylene terephthalate, polyvinyl chloride) were submerged in situ on the sediment and in the water column in the Mediterranean Sea. These samples were studied by chemical and microbiological approaches. After 82 days of immersion, no significant bacterial degradation of the different polymers was observed, except some abiotic alterations of PBAT and LDPE probably due to a photooxidation process. However, after 80 days in an enrichment culture containing plastic films as a main carbon source, Marinomonas genus was specifically selected on the PBAT and a weight loss of 12% was highlighted. A better understanding of the bacterial community colonizing these plastics is essential for an eco-design of new biodegradable polymers to allow a rapid degradation in aquatic environment.
Research Center/Unit :
STARESO FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Environmental sciences & ecology Microbiology
Author, co-author :
Delacuvellerie, Alice; Université de Mons - UMONS > Proteomics and Microbiology Department
Benali, Samira; Université de Mons - UMONS > Polymer and Composite Materials Department
Cyriaque, Valentine; Université de Mons - UMONS > Proteomics and Microbiology Department
Moins, Sébastion; Université de Mons - UMONS > Polymer and Composite Materials Department,
Raquez, Jean-Marie; Université de Mons - UMONS > Polymer and Composite Materials Department,
Gobert, Sylvie ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution UR FOCUS > Océanographie biologique > STARESO
Wattiez, Ruddy; Université de Mons - UMONS > Proteomics and Microbiology Department,
Language :
English
Title :
Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment
Accinelli, C., Sacca, M.L., Mencarelli, M., Vicari, A., Deterioration of bioplasticcarrier bags in the environment and assessment of a new recycling alternative. Chemosphere 89 (2012), 136–143.
Albertsson, A.-C., Andersson, S.O., Karlsson, S., The mechanism of biodegradation of polyethylene. Polym. Degrad. Stab. 18 (1987), 73–87.
Bastarrachea, L., Dhawan, S., Sablani, S.S., Mah, J.H., Kang, D.H., Zhang, J., Tang, J., Biodegradable poly (butylene adipate-co-terephthalate) films incorporated with nisin: characterization and effectiveness against Listeria innocua. J. Food Sci. 75:4 (2010), 215–224.
Beltran-Sanahuja, A., Casado-Coy, N., Simo-Cabrera, L., Sanz-Lazaro, C., Monitoring polymer degradation under different conditions in the marine environment. Environ. Pollut., 259, 2020, 113836.
Benali, S., Aouadi, S., Dechief, A.-L., Murariu, M., Dubois, P., Key factors for tuning hydrolytic degradation of polylactide / zinc oxide nanocomposites. Nanocomposites 1 (2015), 51–60.
Bioplastics market data report, European Bioplastics (2018).
Cheng, J., Jacquin, J., Conan, P., Pujo-Pay, M., Barbe, V., George, M., Fabre, P., Bruzaud, S., Ter Halle, A., Meistertzheim, A.L., Ghiglione, J.F., Relative influence of plastic debris size and shape, chemical composition and phytoplankton-Bacteria interactions in driving seawater plastisphere abundance, diversity and activity. Front. Microbiol., 11, 2020, 610231.
Cornell, J.H., Kaplan, A.M., Rogers, M.R., Biodegradation of photooxidized polyalkylenes. J. Appl. Polym. Sci. 29 (1984), 2581–2597.
Davidson, A., Belbin, L., Exposure of natural Antarctic marine microbial assemblages to ambientUV radia- tion: effects on the marine microbial community. Aquat. Microb. Ecol., 27(2), 2002 159–17.
De Tender, C., Schlundt, C., Devriese, L.I., Mincer, T.J., Zettler, E.R., Amaral-Zettler, L.A., A review of microscopy and comparative molecular-based methods to characterize “Plastisphere” communities. Anal. Methods 9 (2017), 2132–2143.
De Tender, C.A., Devriese, L.I., Haegeman, A., Maes, S., Ruttink, T., Dawyndt, P., Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ. Sci. Technol. 49 (2015), 9629–9638.
De Tender, C.A., Devriese, L.I., Haegeman, A., Maes, S., vangeyte, J., Cattrijsse, A., Dawyndt, P., Ruttink, T., The temporal dynamics of bacterial and fungal colonization on plastic debris in the North Sea. Environ. Sci. Technol. 49 (2017), 9629–9638.
Debroas, D., Mone, A., TerHalle, A., Plastics in the North Atlantic garbage patch: a boat-microbe for hitchhikers and plastic degraders. Sci. Total Environ. 599–600 (2017), 1222–1232.
Delacuvellerie, A., Cyriaque, V., Gobert, S., Benali, S., Wattiez, R., The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. J. Hazard. Mater., 380, 2019, 120899.
Dixon, P., VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14 (2003), 927–930.
Elasri, M.O., Miller, R.V., Study of the response of a biofilm bacterial community to UV radiation. Appl. Environ. Microbiol. 65:5 (1999), 2025–2031.
Gewert, B., Plassmann, M.M., MacLead, M., Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci.: Process. Impacts 17 (2015), 1513–1521.
Geyer, R., Jambeck, J.R., Law, K.L., Production, use, and fate of all plastics ever made. Sci. Adv., 3, 2017, 1700782.
Gilan, I., Hadar, Y., Sivan, A., Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl. Microb. Cell Physiol. 65 (2004), 97–104.
Haider, T.P., Völker, C., Kramm, J., Landfester, K., Wurm, F.R., Plastics of the future ? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 58 (2019), 50–62.
Hammer, Ø., Harper, D.A.T., Ryan, P.D., Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4:1 (2001), 9–18.
Janda, J.M., Shewanella: a marine pathogen as an emerging cause of human disease. Clin. Microbiol. Newsl. 36:4 (2014), 25–29.
Karamanlioglu, M., Preziosi, R., Robson, G.D., Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): a review. Polym. Degrad. Stab. 137 (2017), 122–130.
Keegan, K.P., Glass, E.M., Meyer, F., Methods in molecular biology!microbial environmental genomics (MEG)!MG-RAST, a metagenomics service for analysis of microbial community structure and function. Microb. Environ. Genom. (MEG), 2016, 207–233.
Kirstein, I.V., Wichels, A., Krohne, G., Gerdts, G., Mature biofilm communities on synthetic polymers in seawater - specific or general ?. Mar. Environ. Res. 142 (2018), 147–154.
Kirstein, V.I., Kirmizia, S., Wichelsa, A., Garin-Fernandez, A., Erler, R., Löder, M., Gerdts, G., Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 120 (2016), 1–8.
Koziñska, A., Pekala, A., First isolation of Shewanella putrefaciens from freshwater fish – a potential new pathogen of fish. Bull. Eur. Assoc. Fish Pathol., 24(4), 2004, 189.
Lobelle, D., Cunliffe, M., Early microbial biofilm formation on marine plastic debris. Mar. Pollut. Bull. 62 (2011), 197–200.
Mahoney, K.W., Talbert, J.N., Goddard, J.M., Effect of polyethylene glycol tether size and chemistry on the attachment of lactase to polyethylene films. J. Appl. Polym. Sci. 127:2 (2013), 1203–1210.
Maugeri, L., Carbone, M., Fera, M.T., Irrera, G.P., Gugliandolo, C., Distribution of potentially pathogenic bacteria as free living and plankton associated in a marine coastal zone. J. Appl. Microbiol. 97 (2004), 354–361.
Morawiec, J., Pawlak, A., Slouf, M., Galeski, A., Piorkowska, E., Krasnikowa, N., Preparation and properties of compatibilized ldpe/organo-modified montmorillonite nanocomposites. Eur. Polym. J. 41 (2005), 1115–1122.
Muthuraj, R., Misra, M., Mohanty, A.K., Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions. J. Appl. Polym. Sci., 132, 2015 (n/a-n/a).
Naranci, T., Verstichel, S., Chaganti, S.R., Morales-Gamez, L., Kenny, S.T., De Wilde, B., Padamati, R.B., O'Connor, K.E., Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a Panacea for plastic pollution. Environ. Sci. Technol. 52:18 (2018), 10441–10452.
Nunes, I., Jacquiod, S., Brejnrod, A., Holm, P.E., Johansen, A., Brandt, K.K., Priemé, A., Sorensen, S.J., Coping with copper: legacy effect of copper on potential activity of soil bacteria following a century of exposure. FEMS Microb., 92, 2016, 11 (Ecol.).
Oberbeckmann, S., Osborn, A.M., Duhaime, M.B., Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One, 11, 2016, 0159289.
Paul, M.-A., Alexandre, M., Degée, P., Calberg, C., Jérôme, R., Dubois, P., Exfoliated polylactide/clay nanocomposites by in‐situ coordination–insertion polymerization. Macromol. Rapid Commun. 24:9 (2003), 561–566.
Pinto, M., Langer, T.M., Thorsten, H., Hofmann, T., Herndl, G.J., The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS One, 14, 2019, e0217165.
Rochman, C.M., Hoh, E., Kurobe, T., Teh, S.J., Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep., 3, 2013, 3263.
Roy, P.K., Titus, S., Surekha, P., Tulsi, E., Deshmukh, C., Rajagopal, C., Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium. Polym. Degrad. Stab. 93:10 (2008), 1917–1922.
Rummel, C.D., Jahnke, A., Gorokhova, E., Kühnel, D., Schmitt-Jansen, M., Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ. Sci. Technol. Lett. 4:7 (2017), 258–267.
Sombatsompop, N., Sungsanit, K., Structural changes of PVC in PVC/LDPE melt-blends: effects of LDPE content and number of extrusions. Polym. Eng. Sci. 44:3 (2004), 487–495.
Sudhakar, M., Trishul, A., Doble, M., Suresh Kumar, K., Syed Jahan, S., Inbakandan, D., Viduthalai, R.R., Umadevi, V.R., Sriyutha Murthy, P., Venkatesan, R., Biofouling and biodegradation of polyolefins in ocean waters. Polym. Degrad. Stab. 92 (2007), 1743–1752.
Thompson, J.R., Polz, M.F., Dynamics of Vibrio populations and their role in environmental nutrient cycling. Thompson, F.L., Austin, B., Swings, J., (eds.) The Biology of Vibrios, 2006, ASM Press, Washington, DC, 190–203.
Volova, T.G., Gladyshev, M.I., Trusova, M.Y., Zhila, N.O., Degradation of polyhydroxyalkanoates in eutrophic reservoir. Polym. Degrad. Stab. 92 (2007), 580–586.
Wang, X.-W., Wang, G.-X., Huang, D., Lu, B., Zhen, Z.-C., Ding, Y., Ren, Z.-L., Wang, P.-L., Zhang, W., Ji, J.-H., Degradability comparison of poly(butylene adipate terephthalate) and its composites filled with starch and calcium carbonate in different aquatic environments. J. Appl. Polym. Sci., 136, 2019, 46916.
Wang, Y., Naumann, U., Wright, S.T., Warton, D.I., Mvabund – an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3 (2012), 471–474.
Weng, Y.-X., Jin, Y.-J., Meng, Q.-Y., Wang, L., Zhang, M., Wang, Y.-Z., Biodegradation behavior of poly(butylene adipoate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym. Test. 32 (2013), 918–926.
Wilcox, C., Sebille, Van, Hardesty, E., Threat, B.D., of plastic pollution to seabirds is global, pervasive, and increasing. Proc. Natl. Acad. Sci. U.S.A. 112:38 (2015), 11899–11904.
Xanthos, D., Walker, T.R., International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): a review. Mar. Pollut. Bull. 118:1–2 (2017), 17–26.
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., Oda, K., A bacterium that degrades and assimilates poly(ethyleneterephthalate). Science 351 (2016), 1196–1199.
Zettler, E.R., Mincer, T.J., Amaral-Zettler, L.A., Life in the “plastisphere”: microbial communities on plastics marine debris. Environ. Sci. Technol. 47:13 (2013), 7137–7146.
Zhang, D.-C., Margesin, R., Marinomonas mangrovi sp. nov., isolated from mangrove sediment. Int. J. Syst. Evolut. Microbiol. 65 (2015), 1537–1541.