Comparative Study of Fig Volatile Compounds Using Headspace Solid-Phase Microextraction-Gas chromatography/Mass Spectrometry: Effects of Cultivars and Ripening Stages
[en] Aroma is one of the essential parameters that determine fruit quality. It is also an important
feature of varietal characterization and so valuable for agro-biodiversity identification
and preservation. In order to characterize changes in the aroma fingerprint through
fig development, the main objective of the present research was to study the volatile
organic compound (VOC) profiles of figs (Ficus carica L.) from three cultivars, Taamriwthe
(TH), Azegzaw (AZ), and Averkane (AV), at three ripening stages (unripe, ripe, and fully
ripe). Analyses was performed using Headspace Solid-phase Microextraction and gas
chromatography coupled with mass spectrometry. Results revealed the presence of 29
compounds that were grouped into different chemical classes. Aldehydes comprised
the most abundant VOCs identified in all the studied figs, while alcohols, ketones, and
terpenes comprised the minor compounds found in TH, AZ, and AV figs, respectively.
Different aroma descriptors were identified throughout the ripening stages of figs; fruity
and green aromas were dominant in all cultivars, while a fatty aroma scarcely occurred
in figs. A gallery plot representation demonstrated that certain VOCs differentiate the
studied cultivars and the different ripening stages of figs. Principal component analysis
findings demonstrated characteristic VOCs of distinct ripening stages and cultivars, those
VOCs can be used as fingerprints to distinguish different cultivars and/or ripening stages
Disciplines :
Chemistry Agriculture & agronomy
Author, co-author :
Zidi, Kahina
Kati, Djamel Edine
Mostapha, Bachir-Bey
Genva, Manon ; Université de Liège - ULiège > Département GxABT > Chimie des agro-biosystèmes
Fauconnier, Marie-Laure ; Université de Liège - ULiège > Département GxABT > Chimie des agro-biosystèmes
Language :
English
Title :
Comparative Study of Fig Volatile Compounds Using Headspace Solid-Phase Microextraction-Gas chromatography/Mass Spectrometry: Effects of Cultivars and Ripening Stages
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aprotosoaie A. C., Hǎncianu M., Costache I. I., Miron A., (2014). Linalool: a review on a key odorant molecule with valuable biological properties. Flavour Fragr. J. 29, 193–219. 10.1002/ffj.3197
Arem E., Guido F., Emna S., Manel I., Nesrine Z., Ali F., et al. (2011). Chemical and aroma volatile compositions of date palm (Phoenix dactylifera L.) fruits at three maturation stages. Food Chem. 127, 1744–1754. 10.1016/j.foodchem.2011.02.051
Babushok V. I., Linstrom P. J., Zenkevich I. G., (2011). Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 40, 1–47. 10.1063/1.365355223720406
Barolo M. I., Mostacero N. R., López S. N., (2014). Ficus carica L. (Moraceae): an ancient source of food and health. Food Chem. 164, 119–127. 10.1016/j.foodchem.2014.04.11224996314
Bicchi C., Ruosi M. R., Cagliero C., Cordero C., Liberto E., Rubiolo P., et al. (2011). Quantitative analysis of volatiles from solid matrices of vegetable origin by high concentration capacity headspace techniques: determination of furan in roasted coffee. J. Chromatogr. A 1218, 753–762. 10.1016/j.chroma.2010.12.00221196009
Buttery R. G., Seifert R. M., Guadagni D. G., Ling L. C., (1969). Characterization of some volatile constituents of bell peppers. J. Agric. Food Chem. 17, 1322–1327. 10.1021/jf60166a06123167241
Buttery R. G., Turnbaugh J. G., Ling L. C., (1988). Contribution of volatiles to rice aroma. J. Agric. Food Chem. 36, 1006–1009. 10.1021/jf00083a025
Chawla A., Kaur R., Sharma A. K., (2012). Ficus carica Linn.: a review on its pharmacognostic, phytochemical and pharmacological aspects. Int. J. Pharm. Phytopharm. Res. 4, 215–232.
Chen X., Fedrizzi B., Kilmartin P. A., Quek S. Y., (2021). Development of volatile organic compounds and their glycosylated precursors in tamarillo (Solanum betaceum Cav.) during fruit ripening: a prediction of biochemical pathway. Food Chem. 339:128046. 10.1016/j.foodchem.2020.12804633152861
Czerny M., Christlbauer M., Christlbauer M., Fischer A., Granvogl M., Hammer M., et al. (2008). Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur. Food Res. Technol. 228, 265–273. 10.1007/s00217-008-0931-x
Deboever E., Deleu M., Mongrand S., Lins L., Fauconnier M.-L., (2020). Plant-pathogen interactions: underestimated roles of phyto-oxylipins. Trends Plant Sci. 25, 22–34. 10.1016/j.tplants.2019.09.00931668451
Dixon J., Hewett E. W., (2000). Factors affecting apple aroma / flavour volatile concentration: a review. New Zeal. J. Crop Hortic. Sci. 28, 155–173. 10.1080/01140671.2000.9514136
Dudareva N., Klempien A., Muhlemann K., Kaplan I., (2013). Tansley review Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 198, 16–32. 10.1111/nph.12145
Echeverria G., Graell J., López M. L., Lara I., (2004). Volatile production, quality and aroma-related enzyme activities during maturation of ‘Fuji' apples. Postharvest Biol. Technol. 31, 217–227. 10.1016/j.postharvbio.2003.09.003
El Hadi M. A. M., Zhang F., Wu F., Zhou C., Tao J., (2013). Advances in fruit aroma volatile research. Molecules 18, 8200–8229. 10.3390/molecules1807820023852166
Elmore J. S., Mottram D. S., Hierro E., (2000). Two-fibre solid-phase microextraction combined with gas chromatography-mass spectrometry for the analysis of volatile aroma compounds in cooked pork. J. Chromatogr. A 905, 233–240. 10.1016/S0021-9673(00)00990-011206790
FAO (2018). Food and Agriculture Organisation of the United Nations. Available online at: http://www.fao.org/faostat/en/#data/QC (accessed January 30, 2020).
Fauconnier M.-L., Rojas-Beltran J., Dupuis B., Delaplace P., Frettinger P., Gosset V., et al. (2008). Changes in oxylipin synthesis after Phytophthora infestans infection of potato leaves do not correlate with resistance. Plant Physiol. Biochem. 46, 823–831. 10.1016/j.plaphy.2008.04.010
Fiorini D., Pacetti D., Gabbianelli R., Gabrielli S., Ballini R., (2015). A salting out system for improving the efficiency of the headspace solid-phase microextraction of short and medium chain free fatty acids. J. Chromatogr. A 1409, 282–287. 10.1016/j.chroma.2015.07.05126210111
Garcia C. V., Quek S. Y., Stevenson R. J., Winz R. A., (2012a). Characterisation of bound volatile compounds of a low flavour kiwifruit species: Actinidia eriantha. Food Chem. 134, 655–661. 10.1016/j.foodchem.2012.02.14823107675
Garcia C. V., Quek S. Y., Stevenson R. J., Winz R. A., (2012b). Kiwifruit flavour: a review. Trends Food Sci. Technol. 24, 82–91. 10.1016/j.tifs.2011.08.012
Genva M., Obounou Akong F., Andersson M. X., Deleu M., Lins L., Fauconnier M.-L., (2019). New Insights into the biosynthesis of esterified oxylipins and their involvement in plant defense and developmental mechanisms. Phytochemistry Rev. 18, 343–358 10.1007/s11101-018-9595-8
Gozlekci S., (2010). Selection studies on fig (Ficus carica L.) in Antalya Province of Turkey. African J. Biotechnol. 9, 7857–7861. 10.5897/AJB10.1382
Gozlekci S., Kafkas E., Ercisli S., (2011). Volatile compounds determined by HS / GC-MS technique in peel and pulp of fig (Ficus carica L.) cultivars grown in Mediterranean Region of Turkey. Not. Bot. Horti. Agrobo. 39, 105–108. 10.15835/nbha3926261
Hjelmeland A. K., Ebeler S. E., (2015). Glycosidically bound volatile aroma compounds in grapes and wine: a review. Am. J. Enol. Vitic. 66, 1–11. 10.5344/ajev.2014.14104
Hou J., Liang L., Wang Y., (2020). Volatile composition changes in navel orange at different growth stages by HS-SPME–GC–MS. Food Res. Int. 136:109333. 10.1016/j.foodres.2020.10933332846531
Iban E., Reglero G., Cano M. P., Bliss A., (2000). Frozen storage effects on anthocyanins and volatile compounds of raspberry fruit. J. Agric. Food Chem. 48, 873–879. 10.1021/jf990747c10725166
Janzantti N. S., Macoris M. S., Garruti D. S., Monteiro M., (2012). Influence of the cultivation system in the aroma of the volatile compounds and total antioxidant activity of passion fruit. LWT - Food Sci. Technol. 46, 511–518. 10.1016/j.lwt.2011.11.016
Jeong W. S., Lachance P. A., (2001). Phytosterols and fatty acids in fig (Ficus carica, var. Mission) fruit and tree components. J. Food Sci. 66, 278–281. 10.1111/j.1365-2621.2001.tb11332.x
Karabulut I., Gokbulut I., Bilenler T., Sislioglu K., Ozdemir I. S., Bahar B., et al. (2018). Effect of fruit maturity level on quality, sensory properties and volatile composition of two common apricot (Prunus armeniaca L.) varieties. J. Food Sci. Technol. 55, 2671–2678. 10.1007/s13197-018-3189-830042583
Khalil M. N. A., Fekry M. I., Farag M. A., (2017). Metabolome based volatiles profiling in 13 date palm fruit varieties from Egypt via SPME GC – MS and chemometrics. Food Chem. 217, 171–181. 10.1016/j.foodchem.2016.08.08927664623
Lalel H. J. D., Singh Z., Tan S. C., (2003). Aroma volatiles production during fruit ripening of “Kensington Pride” mango. Postharvest Biol. Technol. 27, 323–336. 10.1016/S0925-5214(02)00117-5
Merkle S., Kleeberg K., Fritsche J., (2015). Recent developments and applications of solid phase microextraction (SPME) in food and environmental analysis—a review. Chromatography 2, 293–381. 10.3390/chromatography2030293
Noguerol-Pato R., González-Barreiro C., Cancho-Grande B., Martínez M. C., Santiago J. L., Simal-Gándara J., (2012). Floral, spicy and herbaceous active odorants in Gran Negro grapes from shoulders and tips into the cluster, and comparison with Brancellao and Mouratón varieties. Food Chem. 135, 2771–2782. 10.1016/j.foodchem.2012.06.10422980871
Obenland D., Collin S., Sievert J., Negm F., Lu M., (2012). Influence of maturity and ripening on aroma volatiles and flavor in ‘Hass' avocado. Postharvest Biol. Technol. 71, 41–50. 10.1016/j.postharvbio.2012.03.006
Oliveira A. P., Baptista P., Andrade P. B., Martins F., Pereira J. A., Silva B. M., et al. (2012). Characterization of Ficus carica L. cultivars by DNA and secondary metabolite analysis: is genetic diversity re fl ected in the chemical composition? FRIN 49, 710–719. 10.1016/j.foodres.2012.09.019
Oliveira A. P., Silva L. R., Guedes P., Pinho D., Gil-izquierdo A., Valentão P., et al. (2010). Volatile profiling of Ficus carica varieties by HS-SPME and GC–IT-MS. Food Chem. 123, 548–557. 10.1016/j.foodchem.2010.04.064
Palassarou M., Melliou E., Liouni M., Michaelakis A., Balayiannis G., Magiatis P., (2017). Volatile profile of Greek dried white figs (Ficus carica L.) and investigation of the role of β -damascenone in aroma formation in fig liquors. J. Sci. Food Agric. 97, 5254–5270. 10.1002/jsfa.841028474390
Palmeira L., Pereira C., Dias M. I., Abreu R. M. V., Corrêa R. C. G., Pires T. C. S. P., et al. (2019). Nutritional, chemical and bioactive profiles of different parts of a Portuguese common fig (Ficus carica L.) variety. Food Res. Int. 126, 1–10. 10.1016/j.foodres.2019.10857231732029
Pawliszyn (2000). Theory of solid-phase microextraction. J. Chromatogr. Sci. 38, 270–278. 10.1093/chromsci/38.7.270
Pereira C., Martín A., López-Corrales M., de Guía Córdoba M., Galván A. I., Serradilla M. J., (2020). Evaluation of the physicochemical and sensory characteristics of different fig cultivars for the fresh fruit market. Foods 9:50619. 10.3390/foods905061932408499
Prasanna V., Prabha T. N., Tharanathan R. N., (2007). Fruit ripening phenomena-an overview. Crit. Rev. Food Sci. Nutr. 47, 1–19. 10.1080/10408390600976841
Rodríguez-Solana R., Galego L. R., Pérez-Santín E., Romano A., (2018). Production method and varietal source influence the volatile profiles of spirits prepared from fig fruits (Ficus carica L.). Eur. Food Res. Technol. 244, 2213–2229. 10.1007/s00217-018-3131-3
Russo F., Caporaso N., Paduano A., Sacchi R., (2017). Characterisation of volatile compounds in Cilento (Italy) figs (Ficus carica L.) cv. Dottato as affected by the drying process. Int. J. Food Prop. 20, 1366–1376. 10.1080/10942912.2017.1344991
Schwab W., Davidovich-Rikanati R., Lewinsohn E., (2008). Biosynthesis of plant-derived flavor compounds. Plant J. 54, 712–732. 10.1111/j.1365-313X.2008.03446.x
Solomon A., Golubowicz S., Yablowicz Z., Grossman S., Bergman M., Gottlieb H. E., et al. (2006). Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). J. Agric. Food Chem. 54, 7717–7723. 10.1021/jf060497h17002444
Song J., Bi J., Chen Q., Wu X., Lyu Y., Meng X., (2018). Assessment of sugar content, fatty acids, free amino acids, and volatile profiles in jujube fruits at different ripening stages. Food Chem. 270, 344–352. 10.1016/j.foodchem.2018.07.10230174057
Takeoka G. R., Flath R. A., Mon T. R., Teranishi R., Guentert M., (1990). Volatile constituents of apricot (Prunus Armeniaca). J. Agric. Food Chem. 38, 471–477. 10.1021/jf00092a03117373818
Tamura H., Boonbumrung S., Yoshizawa T., Varanyanond W., (2001). The volatile constituents in the peel and pulp of a Green Thai Mango, Khieo Sawoei Cultivar (Mangifera indica L.). Food Sci. Technol. Res. 7, 72–77. 10.3136/fstr.7.72
Tanoh E. A., Boué G. B., Nea F., Genva M., Wognin E. L., Ledoux A., et al. (2020). Seasonal effect on thechemical composition, insecticidal properties and other biological activities of Zanthoxylum leprieurii Guill. and Perr. essential oils. Foods 9, 1–26. 10.3390/foods905055032369948
Villalobos M. C., Serradilla M. J., Martín A., Aranda E., López-corrales M., (2018). Influence of modified atmosphere packaging (MAP) on aroma quality of fi gs (Ficus carica L.). Postharvest Biol. Technol. 136, 145–151. 10.1016/j.postharvbio.2017.11.001
Visai C., Vanoli M., (1997). Volatile compound production during growth and ripening of peaches and nectarines. Sci. Hortic. 70, 15–24. 10.1016/S0304-4238(97)00032-0
Wang M. Y., Macrae E., Wohlers M., Marsh K., (2011). Changes in volatile production and sensory quality of kiwifruit during fruit maturation in Actinidia deliciosa ‘Hayward' and A. chinensis ‘Hort16A.' Postharvest Biol. Technol. 59, 16–24. 10.1016/j.postharvbio.2010.08.010
Wang Y., O'Reilly J., Chen Y., Pawliszyn J., (2005). Equilibrium in-fibre standardisation technique for solid-phase microextraction. J. Chromatogr. A 1072, 13–17. 10.1016/j.chroma.2004.12.08415881454
Ware A. B., Kaye P. T., Compton S. G., Van Noort S., (1993). Fig volatiles: their role in attracting pollinators and maintaining pollinator specificity. Plant Syst. Evol. 186, 147–156. 10.1007/BF00940794
Wu Y., Duan S., Zhao L., Gao Z., Luo M., Song S., et al. (2016). Aroma characterization based on aromatic series analysis in table grapes. Sci. Rep. 6, 1–16. 10.1038/srep3111627487935
Yang C., Wang Y., Wu B., Fang J., Li S., (2011). Volatile compounds evolution of three table grapes with different flavour during and after maturation. Food Chem. 128, 823–830. 10.1016/j.foodchem.2010.11.029
Yang Y. N., Zheng F. P., Yu A. N., Sun B. G., (2019). Changes of the free and bound volatile compounds in Rubus corchorifolius L. f. fruit during ripening. Food Chem. 287, 232–240. 10.1016/j.foodchem.2019.02.08030857694
Young H., Paterson V. J., (1985). The effects of harvest maturity, ripeness and storage on kiwifruit aroma. J. Sci. Food Agric. 36, 352–358. 10.1002/jsfa.2740360507
Young H., Paterson V. J., (1995). Characterisation of bound flavour components in kiwifruit. J. Sci. Food Agric. 68, 257–260. 10.1002/jsfa.2740680218
Zidi K., Kati D. E., Benchikh Y., Bey M. B., Ouandjeli D., Yahiaoui S., (2020). The use of modified atmosphere packaging as mean of bioactive compounds and antioxidant activities preservation of fresh figs (Ficus carica L.) from rare cultivars. Ann. Univ. Dunarea Jos Galati, Fascicle VI Food Technol. 44, 149–164. 10.35219/foodtechnology.2020.1.09
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.