Cantwell, C.D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De Grazia, D., Yakovlev, S., Lombard, J.E., Ekelschot, D., Jordi, B., Xu, H., Mohamied, Y., Eskilsson, C., Nelson, B., Vos, P., Biotto, C., Kirby, R.M., Sherwin, S.J., Nektar++: An open-source spectral/hp element framework. Comput. Phys. Comm. 192 (2015), 205–219.
Moxey, D., Cantwell, C.D., Bao, Y., Cassinelli, A., Castiglioni, G., Chun, S., Juda, E., Kazemi, E., Lackhove, K., Marcon, J., Mengaldo, G., Serson, D., Turner, M., Xu, H., Peiró, J., Kirby, R.M., Sherwin, S.J., Nektar++: Enhancing the capability and application of high-fidelity spectral/hp element methods. Comput. Phys. Comm., 249, 2020, 107110.
Karniadakis, G., Sherwin, S., Spectral/hp Element Methods for Computational Fluid Dynamics. second ed., 2013, Oxford Science Publications.
Mengaldo, G., Discontinuous spectral/hp element methods: development, analysis and applications to compressible flows. (Ph.D. thesis), 2015, Imperial College London.
Mengaldo, G., De Grazia, D., Vincent, P.E., Sherwin, S.J., On the connections between discontinuous Galerkin and flux reconstruction schemes: extension to curvilinear meshes. J. Sci. Comput. 67:3 (2016), 1272–1292.
Hesthaven, J.S., Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. 2008, Springer-Verlag, New York.
Hartmann, R., Houston, P., Symmetric interior penalty DG methods for the compressible Navier-Stokes equations I: method formulation. Int. J. Numer. Anal. Model. 3:1 (2005), 1–20.
Vandenhoeck, R., Lani, A., Implicit high-order flux reconstruction solver for high-speed compressible flows. Comput. Phys. Comm. 242 (2019), 1–24.
Capuano, F., Palumbo, A., de Luca, L., Comparative study of spectral-element and finite-volume solvers for direct numerical simulation of synthetic jets. Comput. & Fluids 179 (2019), 228–237.
Peterson, J.W., Lindsay, A.D., Kong, F., Overview of the incompressible Navier–Stokes simulation capabilities in the MOOSE framework. Adv. Eng. Softw. 119 (2018), 68–92.
Hartmann, R., Houston, P., An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier–Stokes equations. J. Comput. Phys. 227:22 (2008), 9670–9685.
Hillewaert, K., Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries. (Ph.D. thesis), 2013, Université Catholique de Louvain.
Arnold, D., Brezzi, F., Cockburn, B., Marini, L., Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39:5 (2002), 1749–1779.
P.-O. Persson, J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2006-112, Reno, Nevada, 2006.
Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T., Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152:2 (1999), 517–549.
Kennedy, C.A., Carpenter, M.H., Diagonally implicit Runge-Kutta methods for ordinary differential equations. A review., 2016, 162.
Knoll, D.A., Keyes, D.E., Jacobian-free Newton-Krylov methods: A survey of approaches and applications. J. Comput. Phys. 193:2 (2004), 357–397.
Saad, Y., Schultz, M.H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7:3 (1986), 856–869.
Cantwell, C.D., Sherwin, S.J., Kirby, R.M., Kelly, P.H.J., From h to p efficiently: Strategy selection for operator evaluation on hexahedral and tetrahedral elements.Symposium on High Accuracy Flow Simulations. Special Issue Dedicated to Prof. Michel Deville. Comput. & Fluids, 43(1), 2011, 23–28.
Orszag, S.A., Spectral methods for problems in complex geometries. J. Comput. Phys. 37:1 (1980), 70–92.
Vanden, K.J., Orkwis, P.D., Comparison of numerical and analytical Jacobians. AIAA J. 34:6 (1996), 1125–1129.
Ezertas, A., Eyi, S., Performances of numerical and analytical Jacobians in flow and sensitivity analysis. 19th AIAA Computational Fluid Dynamics, 2009, American Institute of Aeronautics and Astronautics, San Antonio, Texas.
Xiaoquan, Y., Cheng, J., Luo, H., Zhao, Q., Robust implicit direct discontinuous Galerkin method for simulating the compressible turbulent flows. AIAA J. 57:3 (2019), 1113–1132.
Franciolini, M., Crivellini, A., Nigro, A., On the efficiency of a matrix-free linearly implicit time integration strategy for high-order discontinuous Galerkin solutions of incompressible turbulent flows. Comput. & Fluids 159 (2017), 276–294.
Vos, P.E.J., Eskilsson, C., Bolis, A., Chun, S., Robert, M., Sherwin, S.J., A generic framework for time-stepping partial differential equations (PDEs): General linear methods, object-oriented implementation and application to fluid problems. Int. J. Comput. Fluid Dyn. 25:3 (2011), 107–125.
Cheng, J., Yang, X., Liu, X., Liu, T., Luo, H., A direct discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids. J. Comput. Phys. 327 (2016), 484–502.
Cockburn, B., Shu, C., The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35:6 (1998), 2440–2463.
Toro, E.F., Riemann Solvers and Numerical Methods for Fluid Dynamics. third ed., 2009, Springer.
Bastian, P., Müller, E.H., Müthing, S., Piatkowski, M., Matrix-free multigrid block-preconditioners for higher order discontinuous Galerkin discretisations. J. Comput. Phys. 394 (2019), 417–439.
Pazner, W., Persson, P.-O., Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods. J. Comput. Phys. 354 (2018), 344–369.
Diosady, L.T., Murman, S.M., Scalable tensor-product preconditioners for high-order finite-element methods: Scalar equations. J. Comput. Phys. 394 (2019), 759–776.
Peraire, J., Persson, P., The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30:4 (2008), 1806–1824.
Williams, S., Waterman, A., Patterson, D., Roofline: an insightful visual performance model for multicore architectures. Commun. ACM 52:4 (2009), 65–76.
Roy, C.J., Review of code and solution verification procedures for computational simulation. J. Comput. Phys. 205:1 (2005), 131–156.
Oliver, T.A., Multigrid solution for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. (Ph.D. thesis), 2004, Massachusetts Institute of Technology.
Bijl, H., Carpenter, M.H., Vatsa, V.N., Kennedy, C.A., Implicit time integration schemes for the unsteady compressible Navier–Stokes equations: laminar flow. J. Comput. Phys. 179:1 (2002), 313–329.
Wiart, C.C.d., Hillewaert, K., Duponcheel, M., Winckelmans, G., Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number. Internat. J. Numer. Methods Fluids 74:7 (2014), 469–493.
Winters, A.R., Moura, R.C., Mengaldo, G., Gassner, G.J., Walch, S., Peiró, J., Sherwin, S.J., A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations. J. Comput. Phys. 372 (2018), 1–21.
Parnaudeau, P., Carlier, J., Heitz, D., Lamballais, E., Experimental and numerical studies of the flow over a circular cylinder at reynolds number 3900. Phys. Fluids, 20(8), 2008, 085101.
Kravchenko, A.G., Moin, P., Numerical studies of flow over a circular cylinder at ReD=3900. Phys. Fluids 12:2 (2000), 403–417.
Toulorge, T., Desmet, W., Optimal Runge-Kutta schemes for discontinuous Galerkin space discretizations applied to wave propagation problems. J. Comput. Phys. 231:4 (2012), 2067–2091.
Boin, J.P., Robinet, J.C., Corre, C., Deniau, H., 3d steady and unsteady bifurcations in a shock-wave/laminar boundary layer interaction: A numerical study. Theor. Comput. Fluid Dyn. 20:3 (2006), 163–180.
White, F.M., Viscous Fluid Flow. second ed., 1991, McGraw-Hill, New York.
Eckert, E., Engineering relations for friction and heat transfer to surfaces in high velocity flow. J. Aeronaut. Sci. 22:8 (1955), 585–587.