Paper published in a book (Scientific congresses and symposiums)
Reconstruction of missing data in satellite images of the Southern North Sea using a convolutional neural network (DINCAE)
Barth, Alexander; Alvera Azcarate, Aida; Troupin, Charles et al.
2021In 2021 IGARSS: IEEE International Geoscience & Remote Sensing Symposium. Proceedings : July 12-16, 2021, Brussels (Belgium)
Peer reviewed
 

Files


Full Text
IGARSS_DINCAE_2021.pdf
Author preprint (645.01 kB)
Download
Annexes
IGARSS2021_DINCAE_ABarth.pdf
(4.19 MB)
Presentation
Download
IGARSS_DINCAE_Barth.mp4
(28.89 MB)
Video of presentation
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
DINCAE; neural network; autoencoder
Abstract :
[en] A neural network with the architecture of a convolutional autoencoder is used to reconstruct missing data in satellite images of the Southern North Sea. The technique is applied to a multi-satellite data product of chlorophyll-a and total suspended particulate matter (SPM) concentration (representing 20 years of data). The presence of clouds significantly reduces the extent of the ocean that can be measured by satellite sensors using the visible or infrared spectrum. The accuracy of the reconstruction is assessed using cross-validation (i.e. increasing the actual extent of the cloud coverage). The results of the neural network compare favourably the data withheld for cross-validation.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Barth, Alexander  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Alvera Azcarate, Aida  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Troupin, Charles  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Beckers, Jean-Marie  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Van der Zande, Dimitry;  RBINS
Language :
English
Title :
Reconstruction of missing data in satellite images of the Southern North Sea using a convolutional neural network (DINCAE)
Publication date :
2021
Event name :
2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
Event date :
from 2021-07-12 to 2021-07-16
Audience :
International
Main work title :
2021 IGARSS: IEEE International Geoscience & Remote Sensing Symposium. Proceedings : July 12-16, 2021, Brussels (Belgium)
Peer reviewed :
Peer reviewed
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Name of the research project :
MultiSync
Funders :
BELSPO - Politique scientifique fédérale
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 29 June 2021

Statistics


Number of views
110 (9 by ULiège)
Number of downloads
191 (5 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
2
OpenCitations
 
0
OpenAlex citations
 
1

Bibliography


Similar publications



Contact ORBi