High-resolution data; DINEOF; Ocean Colour; North Sea
Abstract :
[en] A combined Sentinel-2 and Sentinel-3 Suspended Particulate Matter reconstruction is performed using an Empirical Orthogonal Function technique, called DINEOF (Data Interpolating Empirical Orthogonal Functions). The combination of these two datasets allows us to retain both the high spatial resolution of the Sentinel-2 data while increasing the temporal resolution thanks to the addition of Sentinel-3 data on days when no Sentinel-2 data are available. Results show an increased variability on the reconstruction of Sentinel-3 data, and a low error of the overall reconstruction.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Alvera Azcarate, Aida ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Barth, Alexander ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Troupin, Charles ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Beckers, Jean-Marie ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Van der Zande, Dimitry
Language :
English
Title :
Creation of high resolution suspended particulate matter data in the North Sea from Sentinel-2 and Sentinel-3 data.
Publication date :
2021
Event name :
2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
Event date :
2021-07-12 to 2021-07-16
Audience :
International
Main work title :
2021 IGARSS: IEEE International Geoscience & Remote Sensing Symposium. Proceedings : July 12-16, 2021, Brussels (Belgium)
A. Alvera-Azcárate, A. Barth, M. Rixen, and J.M. Beckers, “Reconstruction of incomplete oceanographic data sets using Empirical Orthogonal Functions. Application to the Adriatic Sea surface temperature.,” Ocean Modelling., vol. 9, pp. 325-346, 2005, doi:10.1016/j.ocemod.2004.08.001.
C. Brockmann, R. Doerffer, M. Peters, K. Stelzer, S. Embacher, and A. Ruescas, “Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters,” pp. Living Planet Symposium ESA, SP-470.
R. Doerffer and H. Schiller, “The MERIS Case 2 water algorithm,” International Journal of Remote Sensing, vol. 28, no. 3-4, pp. 517-535, 2007.
B. Nechad, K. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sensing of Environment, vol. 114, no. 4, pp. 854 - 866, 2010.
H. Lavigne, D. Van der Zande, K. Ruddick, J. Cardoso Dos Santos, F. Gohin, V. Brotas, and S. Kratzer, “Quality-control tests for OC4, OC5 and NIR-red satellite chlorophyll-a algorithms applied to coastal waters,” Remote Sensing of Environment, 2021, In press.
A. Alvera-Azcárate, D. Van der Zande, A. Barth, J. F. Cardoso dos Santos, C. Troupin, and J.-M. Beckers, “Detection of shadows in high spatial resolution ocean satellite data using DINEOF,” Remote Sensing of Environment, vol. 253, pp. 112229, 2021.
A. Alvera-Azcárate, Q. Vanhellemont, K. Ruddick, A. Barth, and J.-M. Beckers, “Analysis of high frequency geostationary ocean colour data using DINEOF,” Estuarine, Coastal and Shelf Science, vol. 159, pp. 28-36, 2015.
A. Alvera-Azcárate, A. Barth, D. Sirjacobs, and J.-M. Beckers, “Enhancing temporal correlations in EOF expansions for the reconstruction of missing data using DINEOF,” Ocean Science, vol. 5, pp. 475-485, 2009.
J.-M. Beckers, A. Barth, and A. Alvera-Azcárate, “DINEOF reconstruction of clouded images including error maps. Application to the Sea Surface Temperature around Corsican Island,” Ocean Science, vol. 2, no. 2, pp. 183-199, 2006.