STAR - Space sciences, Technologies and Astrophysics Research - ULiège A&M - Aérospatiale et Mécanique - ULiège
Disciplines :
Computer science
Author, co-author :
Abbott, R.
Baltus, Grégory ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
Collette, Christophe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Active aerospace struct. and adv. mecha. systems
Cudell, Jean-René ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
Fays, Maxime ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
scieentific, Others-Ligo
collaborations, Virgo
Language :
English
Title :
Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo
Maggiore, M., Gravitational waves, volume 1: theory and experiments. 2008, Oxford University Press.
Einstein, A., Approximative integration of the field equations of gravitation. Sitzungsber Preuss Akad Wiss Berlin (Math Phys) 1916 (1916), 688–696.
Einstein, A., Über Gravitationswellen. Sitzungsber Preuss Akad Wiss Berlin (Math Phys) 1918 (1918), 154–167.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. Observation of gravitational waves from a binary black hole merger. Phys Rev Lett, 116, 2016, 061102.
Acernese, F., et al., Virgo Collaboration. Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical Quantum Gravity, 32, 2015, 024001.
KAGRA Collaboration, LIGO Scientific Collaboration, and Virgo Collaboration. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. 2019 Preprint at https://arxiv.org/abs/1304.0670.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Phys Rev D, 93, 2016, 122003.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys Rev Lett, 116, 2016, 241103.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. Binary black hole mergers in the first Advanced LIGO observing run. Phys Rev X, 6, 2016, 041015.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. GW170104: Observation of a 50-solar-mass binary black hole coalescence at Redshift 0.2. Phys Rev Lett, 118, 2017, 221101.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence. Phys Rev Lett, 119, 2017, 141101.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett, 119, 2017, 161101.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and virgo during the first and second observing runs. Phys Rev X, 9, 2019, 031040 arXiv:1811.12907.
Abbott, B.P., et al. Multi-messenger observations of a binary neutron star merger. Astrophys J, 848, 2017, L12.
Anderson, S., Williams, R., LIGO data management plan. 2017 URL https://dcc.ligo.org/LIGO-M1000066/public.
LIGO Scientific Collaboration and Virgo Collaboration. Memorandum of understanding between Virgo and LIGO: LIGO-M060038, VIR-0091A., 2019 https://dcc.ligo.org/LIGO-M060038/public.
LIGO Scientific Collaboration and Virgo Collaboration. LIGO/Virgo GWTC-1 data release. 2018 URL https://www.gw-openscience.org/GWTC-1/.
LIGO Scientific Collaboration and Virgo Collaboration. LIGO/Virgo O1 data release. 2018 URL https://www.gw-openscience.org/O1/.
LIGO Scientific Collaboration and Virgo Collaboration. LIGO/Virgo O2 data release. 2019 URL https://www.gw-openscience.org/O2/.
Vallisneri, M., Kanner, J., Williams, R., Weinstein, A., Stephens, B., The LIGO open science center. J Phys Conf Ser, 610, 2015, 012021 arXiv:1410.4839.
Green, M.A., Moffat, J.W., Extraction of black hole coalescence waveforms from noisy data. Phys Lett B, 784, 2018, 312 arXiv:1711.00347.
Nielsen, A.B., Nitz, A.H., Capano, C.D., Brown, D.A., Investigating the noise residuals around the gravitational wave event GW150914. J Cosmol Astropart Phys, 1902, 2019, 019 arXiv:1811.04071.
Nitz, A.H., et al. 1-OGC: The first open gravitational-wave catalog of binary mergers from analysis of public Advanced LIGO data. Astrophys J, 872, 2019, 195 arXiv:1811.01921.
Zackay, B., Venumadhav, T., Dai, L., Roulet, J., Zaldarriaga, M., A highly spinning and aligned binary black hole merger in the Advanced LIGO first observing run. Phys Rev D, 100, 2019, 023007 arXiv:1902.10331.
Venumadhav, T., Zackay, B., Roulet, J., Dai, L., Zaldarriaga, M., New binary black hole mergers in the second observing run of Advanced LIGO and Advanced Virgo. Phys Rev D, 101, 2020, 083030 arXiv:1904.07214.
Nitz, A.H., et al. 2-OGC: Open gravitational-wave catalog of binary mergers from analysis of public Advanced LIGO and Virgo data, 891. 2020, 123 Preprint at https://arxiv.org/abs/1910.05331.
Zackay, B., Dai, L., Venumadhav, T., Roulet, J., Zaldarriaga, M., Detecting gravitational waves with disparate detector responses: Two new binary black hole mergers. 2019 Preprint at https://arxiv.org/abs/1910.09528.
Kanner, J.B., et al. Leveraging waveform complexity for confident detection of gravitational waves. Phys Rev D, 93, 2016, 022002 URL https://link.aps.org/doi/10.1103/PhysRevD.93.022002.
Yamamoto, T., Hayama, K., Mano, S., Itoh, Y., Kanda, N., Characterization of non-gaussianity in gravitational wave detector noise. Phys Rev D, 93, 2016, 082005 URL https://link.aps.org/doi/10.1103/PhysRevD.93.082005.
Green, M.A., Moffat, J., Extraction of black hole coalescence waveforms from noisy data. Phys Lett B 784 (2018), 312–323 URL http://www.sciencedirect.com/science/article/pii/S0370269318306129.
Gayathri, V., et al. Astrophysical signal consistency test adapted for gravitational-wave transient searches. Phys Rev D, 100, 2019, 124022 URL https://link.aps.org/doi/10.1103/PhysRevD.100.124022.
Yanagisawa, K., et al. A time–frequency analysis of gravitational wave signals with non-harmonic analysis. Prog Theor Exp Phys, 2019, 2019, 063F01, 10.1093/ptep/ptz043 https://academic.oup.com/ptep/article-pdf/2019/6/063F01/28788035/ptz043.pdf.
Gadre, B., Mitra, S., Dhurandhar, S., Hierarchical search strategy for the efficient detection of gravitational waves from nonprecessing coalescing compact binaries with aligned-spins. Phys Rev D, 99, 2019, 124035 URL https://link.aps.org/doi/10.1103/PhysRevD.99.124035.
Dai, L., Venumadhav, T., Zackay, B., Parameter estimation for GW170817 using relative binning. 2018 Preprint at https://arxiv.org/abs/1806.08793.
De, S., Capano, C.D., Biwer, C.M., Nitz, A.H., Brown, D.A., Posterior samples of the parameters of binary black holes from Advanced LIGO, Virgo's second observing run. Sci Data, 6, 2019, 81 arXiv:1811.09232.
Gerosa, D., Vitale, S., Haster, C.-J., Chatziioannou, K., Zimmerman, A., Reanalysis of ligo black-hole coalescences with alternative prior assumptions. Proc Int Astron Union 13 (2017), 22–28.
Chatziioannou, K., et al. Noise spectral estimation methods and their impact on gravitational wave measurement of compact binary mergers. Phys Rev D, 100, 2019, 104004 URL https://link.aps.org/doi/10.1103/PhysRevD.100.104004.
Kumar, P., et al. Constraining the parameters of gw150914 and gw170104 with numerical relativity surrogates. Phys Rev D, 99, 2019, 124005 URL https://link.aps.org/doi/10.1103/PhysRevD.99.124005.
Chatziioannou, K., et al. On the properties of the massive binary black hole merger gw170729. Phys Rev D, 100, 2019, 104015 URL https://link.aps.org/doi/10.1103/PhysRevD.100.104015.
Kalaghatgi, C., Hannam, M., Raymond, V., Parameter estimation with a spinning multimode waveform model. Phys Rev D, 101, 2020, 103004 URL https://link.aps.org/doi/10.1103/PhysRevD.101.103004.
Buscicchio, R., Roebber, E., Goldstein, J.M., Moore, C.J., Label switching problem in bayesian analysis for gravitational wave astronomy. Phys Rev D, 100, 2019, 084041 URL https://link.aps.org/doi/10.1103/PhysRevD.100.084041.
De, S., et al. Tidal deformabilities and radii of neutron stars from the observation of GW170817. Phys Rev Lett, 121, 2018, 091102 arXiv:1804.08583.
Carson, Z., Chatziioannou, K., Haster, C.-J., Yagi, K., Yunes, N., Equation-of-state insensitive relations after gw170817. Phys Rev D, 99, 2019, 083016 URL https://link.aps.org/doi/10.1103/PhysRevD.99.083016.
Reyes, S., Brown, D.A., Constraints on nonlinear tides due to p-g mode coupling from the neutron-star merger GW170817. Astrophys J, 894, 2020, 41 1808.07013.
Pratten, G., Schmidt, P., Hinderer, T., Gravitational-wave asteroseismology with fundamental modes from compact binary inspirals. Nature Commun, 11, 2020, 2553.
Hagihara, Y., Era, N., Iikawa, D., Nishizawa, A., Asada, H., Constraining extra gravitational wave polarizations with advanced ligo, advanced virgo, and kagra and upper bounds from gw170817. Phys Rev D, 100, 2019, 064010 URL https://link.aps.org/doi/10.1103/PhysRevD.100.064010.
Isi, M., Weinstein, A.J., Mead, C., Pitkin, M., Detecting beyond-einstein polarizations of continuous gravitational waves. Phys Rev D, 91, 2015, 082002 URL https://link.aps.org/doi/10.1103/PhysRevD.91.082002.
Carullo, G., Del Pozzo, W., Veitch, J., Observational black hole spectroscopy: A time-domain multimode analysis of gw150914. Phys Rev D, 99, 2019, 123029 URL https://link.aps.org/doi/10.1103/PhysRevD.99.123029.
Isi, M., Giesler, M., Farr, W.M., Scheel, M.A., Teukolsky, S.A., Testing the no-hair theorem with gw150914. Phys Rev Lett, 123, 2019, 111102 URL https://link.aps.org/doi/10.1103/PhysRevLett.123.111102.
Gebhard, T.D., Kilbertus, N., Harry, I., Schölkopf, B., Convolutional neural networks: A magic bullet for gravitational-wave detection?. Phys Rev D, 100, 2019, 063015 URL https://link.aps.org/doi/10.1103/PhysRevD.100.063015.
Wang, H., Wu, S., Cao, Z., Liu, X., Zhu, J.-Y., Gravitational-wave signal recognition of ligo data by deep learning. Phys Rev D, 101, 2020, 104003 URL https://link.aps.org/doi/10.1103/PhysRevD.101.104003.
Hannuksela, O.A., et al. Search for gravitational lensing signatures in LIGO-virgo binary black hole events. Astrophys J, 874, 2019, L2, 10.3847/2041-8213/ab0c0f.
Broadhurst, T., M. Diego, J., F. Smoot, G., Twin ligo/virgo detections of a viable gravitationally-lensed black hole merger. 2019 Preprint at https://arxiv.org/abs/1901.03190.
Radice, D., Dai, L., Multimessenger parameter estimation of GW170817. Eur Phys J A, 55, 2019, 50 arXiv:1810.12917.
Lousto, C.O., Healy, J., Kicking gravitational wave detectors with recoiling black holes. Phys Rev D, 100, 2019, 104039 URL https://link.aps.org/doi/10.1103/PhysRevD.100.104039.
Finstad, D., De, S., Brown, D.A., Berger, E., Biwer, C.M., Measuring the viewing angle of GW170817 with electromagnetic and gravitational waves. Astrophys J, 860, 2018, L2.
Nicolaou, C., Lahav, O., Lemos, P., Hartley, W., Braden, J., The impact of peculiar velocities on the estimation of the hubble constant from gravitational wave standard sirens. Mon Not R Astron Soc 495 (2020), 90–97 https://academic.oup.com/mnras/article-pdf/495/1/90/33216608/staa1120.pdf.
Chen, Z.-C., Huang, Q.-G., Distinguishing primordial black holes from astrophysical black holes by einstein telescope and cosmic explorer. J Cosmol Astropart Phys, 2020, 2020 039–039.
Kwee, P., et al. Stabilized high-power laser system for the gravitational wave detector Advanced LIGO. Opt Express 20 (2012), 10617–10634, 10.1364/OE.20.010617.
Winkelmann, L., et al. Injection-locked single-frequency laser with an output power of 220 W. Appl Phys B 102 (2011), 529–538, 10.1007/s00340-011-4411-9.
Liu, Z., et al. Feedback control of optical beam spatial profiles using thermal lensing. Appl Opt 52 (2013), 6452–6457, 10.1364/AO.52.006452.
Palashov, O.V., et al. High-vacuum-compatible high-power faraday isolators for gravitational-wave interferometers. J Opt Soc Amer B 29 (2012), 1784–1792, 10.1364/JOSAB.29.001784.
Dooley, K.L., et al. Thermal effects in the input optics of the enhanced laser interferometer gravitational-wave observatory interferometers. Rev Sci Instrum, 83, 2012, 10.1063/1.3695405.
Arain, M.A., Mueller, G., Design of the Advanced LIGO recycling cavities. Opt Express 16 (2008), 10018–10032 URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-14-10018.
Mueller, C.L., et al. The Advanced LIGO input optics. Rev Sci Instrum, 87, 2016, 014502 URL http://scitation.aip.org/content/aip/journal/rsi/87/1/10.1063/1.4936974.
Harry, G.M., et al. Titania-doped tantala/silica coatings for gravitational-wave detection. Classical Quantum Gravity, 24, 2007, 405 URL http://stacks.iop.org/0264-9381/24/i=2/a=008.
Granata, M., et al. Mechanical loss in state-of-the-art amorphous optical coatings. Phys Rev D, 93, 2016, 012007, 10.1103/PhysRevD.93.012007.
Pinard, L., et al. Mirrors used in the LIGO interferometers for first detection of gravitational waves. Appl Opt, 56, 2017, C11, 10.1364/AO.56.000C11.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. GW150914: The Advanced LIGO detectors in the era of first discoveries. Phys Rev Lett, 116, 2016, 131103 URL http://link.aps.org/doi/10.1103/PhysRevLett.116.131103.
Buonanno, A., Chen, Y., Signal recycled laser-interferometer gravitational-wave detectors as optical springs. Phys Rev D, 65, 2002, 042001 URL https://link.aps.org/doi/10.1103/PhysRevD.65.042001.
Heptonstall, A., et al. Enhanced characteristics of fused silica fibers using laser polishing. Classical Quantum Gravity, 31, 2014, 105006 URL http://stacks.iop.org/0264-9381/31/i=10/a=105006.
Bell, C.J., et al. Experimental results for nulling the effective thermal expansion coefficient of fused silica fibres under a static stress. Classical Quantum Gravity, 31, 2014, 065010 URL http://stacks.iop.org/0264-9381/31/i=6/a=065010.
Tokmakov, K., et al. A study of the fracture mechanisms in pristine silica fibres utilising high speed imaging techniques. J Non Cryst Solids 358 (2012), 1699–1709 URL http://www.sciencedirect.com/science/article/pii/S0022309312002554.
Hammond, G.D., et al. Reducing the suspension thermal noise of advanced gravitational wave detectors. Classical Quantum Gravity, 29, 2012, 124009 URL http://stacks.iop.org/0264-9381/29/i=12/a=124009.
Aston, S.M., et al. Update on quadruple suspension design for Advanced LIGO. Classical Quantum Gravity, 29, 2012, 235004 URL http://stacks.iop.org/0264-9381/29/i=23/a=235004.
Carbone, L., et al. Sensors and actuators for the Advanced LIGO mirror suspensions. Classical Quantum Gravity, 29, 2012, 115005 URL http://stacks.iop.org/0264-9381/29/i=11/a=115005.
Cumming, A.V., et al. Design and development of the Advanced LIGO monolithic fused silica suspension. Classical Quantum Gravity, 29, 2012, 035003 URL http://stacks.iop.org/0264-9381/29/i=3/a=035003.
Heptonstall, A., et al. Invited article: CO2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions. Rev Sci Instrum, 82, 2011 URL http://scitation.aip.org/content/aip/journal/rsi/82/1/10.1063/1.3532770.
Shapiro, B.N., et al. Noise and control decoupling of Advanced LIGO suspensions. Classical Quantum Gravity, 32, 2015, 015004 URL http://stacks.iop.org/0264-9381/32/i=1/a=015004.
Matichard, F., et al. ADvanced LIGO two-stage twelve-axis vibration isolation and positioning platform. part 1: Design and production overview. Precis Eng 40 (2015), 273–286 URL http://www.sciencedirect.com/science/article/pii/S0141635914001561.
Matichard, F., et al. ADvanced LIGO two-stage twelve-axis vibration isolation and positioning platform. part 2: Experimental investigation and tests results. Precis Eng 40 (2015), 287–297 URL http://www.sciencedirect.com/science/article/pii/S0141635914002098.
Matichard, F., et al. Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance. Classical Quantum Gravity, 32, 2015, 185003 URL http://stacks.iop.org/0264-9381/32/i=18/a=185003.
Wen, S., et al. Hydraulic external pre-isolator system for LIGO. Classical Quantum Gravity, 31, 2014, 235001 URL http://stacks.iop.org/0264-9381/31/i=23/a=235001.
Daw, E.J., Giaime, J.A., Lormand, D., Lubinski, M., Zweizig, J., Long-term study of the seismic environment at LIGO. Classical Quantum Gravity, 21, 2004, 2255 URL http://stacks.iop.org/0264-9381/21/i=9/a=003.
Barsotti, L., Evans, M., Fritschel, P., Alignment sensing and control in Advanced LIGO. Classical Quantum Gravity, 27, 2010, 084026 URL http://stacks.iop.org/0264-9381/27/i=8/a=084026.
Staley, A., et al. High precision optical cavity length and width measurements using double modulation. Opt Express 23 (2015), 19417–19431 URL http://www.opticsexpress.org/abstract.cfm?URI=oe-23-15-19417.
Evans, M., et al. Observation of parametric instability in Advanced LIGO. Phys Rev Lett, 114, 2015, 161102 URL http://link.aps.org/doi/10.1103/PhysRevLett.114.161102.
Rollins, J.G., Distributed state machine supervision for long-baseline gravitational-wave detectors. Rev Sci Instrum, 87, 2016 URL http://scitation.aip.org/content/aip/journal/rsi/87/9/10.1063/1.4961665.
Phelps, M.H., Gushwa, K.E., Torrie, C.I., Optical contamination control in the Advanced LIGO ultra-high vacuum system. Proc SPIE, 8885, 2013, 88852E, 10.1117/12.2047327.
Smith, M.R., Scattered light control in Advanced LIGO. 2012, World Scientific Publishing Company URL http://www.worldscientific.com/doi/abs/10.1142/9789814374552_0312.
Brooks, A.F., et al. Direct measurement of absorption-induced wavefront distortion in high optical power systems. Appl Opt 48 (2009), 355–364 URL http://ao.osa.org/abstract.cfm?URI=ao-48-2-355.
Lawrence, R., Zucker, M., Fritschel, P., Marfuta, P., Shoemaker, D., Adaptive thermal compensation of test masses in Advanced LIGO. Classical Quantum Gravity, 19, 2002, 1803 URL http://stacks.iop.org/0264-9381/19/i=7/a=377.
Heitmann, H., on behalf of the Virgo Collaboration. Status of the Advanced Virgo gravitational wave detector. Proc SPIE, 10700, 2018, 1070017, 10.1117/12.2312572.
Granata, M., et al. Amorphous optical coatings of present gravitational-wave interferometers. 2019 Preprint at https://arxiv.org/abs/1909.03737.
Amato, A., et al. Optical properties of high-quality oxide coating materials used in gravitational-wave advanced detectors. J Phys Mater, 2, 2019, 035004.
Bersanetti, D., et al. New algorithm for the guided lock technique for a high-finesse optical cavity. Astropart Phys, 117, 2020, 102405 URL https://doi.org/10.1016/j.astropartphys.2019.102405.
Acernese, F., et al., Virgo Collaboration. The advanced Virgo longitudinal control system for the O2 observing run. Astropart Phys, 116, 2020, 102386 URL https://doi.org/10.1016/j.astropartphys.2019.07.005.
Aiello, L., et al. Thermal compensation system in advanced and third generation gravitational wave interferometric detectors. J Phys Conf Ser, 1226, 2019, 012019.
Cirone, A., et al. Investigation of magnetic noise in Advanced Virgo. Classical Quantum Gravity, 36, 2019, 225004 Preprint at https://arxiv.org/abs/1908.11174.
Cirone, A., et al. Magnetic coupling to the Advanced Virgo payloads and its impact on the low frequency sensitivity. Rev Sci Instrum, 89, 2018, 114501, 10.1063/1.5045397.
Tringali, M.C., et al. Seismic array measurements at Virgo's west end building for the configuration of a Newtonian-noise cancellation system. Classical Quantum Gravity, 2019 URL http://iopscience.iop.org/10.1088/1361-6382/ab5c43.
van Heijningen, J.V., et al. A multistage vibration isolation system for Advanced Virgo suspended optical benches. Classical Quantum Gravity, 36, 2019, 075007.
Staley, A., et al. Achieving resonance in the advanced LIGO gravitational-wave interferometer. Classical Quantum Gravity, 31, 2014, 245010, 10.1088/0264-9381/31/24/245010.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical Quantum Gravity, 33, 2016, 134001 arXiv:1602.03844.
Effler, A., et al. Environmental influences on the LIGO gravitational wave detectors during the 6th science run. Classical Quantum Gravity, 32, 2015, 035017.
Finn, L.S., Chernoff, D.F., Observing binary inspiral in gravitational radiation: One interferometer. Phys Rev D 47 (1993), 2198–2219 arXiv:gr-qc/9301003.
Chen, H.-Y., et al. Distance measures in gravitational-wave astrophysics and cosmology. 2017 arXiv:1709.08079.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. Low-latency gravitational-wave alerts for multimessenger astronomy during the second Advanced LIGO and virgo observing run. Astrophys J, 875, 2019, 161.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and virgo network. Phys Rev D, 100, 2019, 064064.
Bartos, I., et al. The Advanced LIGO timing system. Classical Quantum Gravity, 27, 2010, 084025 URL http://stacks.iop.org/0264-9381/27/i=8/a=084025.
Goetz, E., Savage, R.L., Calibration of the LIGO displacement actuators via laser frequency modulation. Classical Quantum Gravity, 27, 2010, 215001, 10.1088/0264-9381/27/21/215001.
Goetz, E., et al. Accurate calibration of test mass displacement in the LIGO interferometers. Classical Quantum Gravity, 27, 2010, 084024 URL http://stacks.iop.org/0264-9381/27/i=8/a=084024.
Goetz, E., et al. Precise calibration of LIGO test mass actuators using photon radiation pressure. Classical Quantum Gravity, 26, 2009, 245011 URL http://stacks.iop.org/0264-9381/26/i=24/a=245011.
Abadie, J., et al., LIGO Scientific Collaboration. Calibration of the LIGO gravitational wave detectors in the fifth science run. Nucl Instrum Methods Phys Res A 624 (2010), 223–240 URL http://www.sciencedirect.com/science/article/pii/S0168900210017031.
Accadia, T., et al., Virgo Collaboration. Reconstruction of the gravitational wave signal h(t) during the Virgo science runs and independent validation with a photon calibrator. Classical Quantum Gravity, 31, 2014, 165013.
Accadia, T., et al., Virgo Collaboration. Calibration and sensitivity of the virgo detector during its second science run. Classical Quantum Gravity, 28, 2010, 025005.
Viets, A.D., et al. Reconstructing the calibrated strain signal in the Advanced LIGO detectors. Classical Quantum Gravity, 35, 2018, 095015 arXiv:1710.09973.
Acernese, F., et al., Virgo Collaboration. Calibration of Advanced Virgo and reconstruction of the gravitational wave signal h(t) during the observing run O2. Classical Quantum Gravity, 35, 2018, 205004.
Cahillane, C., et al. Calibration uncertainty for Advanced LIGO's first and second observing runs. Phys Rev D, 96, 2017, 102001 arXiv:1708.03023.
Abbott, B.P., et al., LIGO Scientific Collaboration. Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Phys Rev D, 95, 2017, 062003 URL https://link.aps.org/doi/10.1103/PhysRevD.95.062003.
LIGO Scientific Collaboration and Virgo Collaboration. LIGO/Virgo public alerts user guide. 2018 URL https://emfollow.docs.ligo.org/userguide/.
LIGO Scientific Collaboration and Virgo Collaboration. Data release for event GW150914. 2016 URL https://www.gw-openscience.org/events/GW150914/.
LIGO Scientific Collaboration and Virgo Collaboration. Data release for event LVT151012. 2016 URL https://www.gw-openscience.org/events/LVT151012/.
LIGO Scientific Collaboration and Virgo Collaboration. Data release for event GW151226. 2016 URL https://www.gw-openscience.org/events/GW151226/.
LIGO Scientific Collaboration and Virgo Collaboration. Data release for event GW170104. 2017 URL https://www.gw-openscience.org/events/GW170104/.
LIGO Scientific Collaboration and Virgo Collaboration. Data release for event GW170608. 2017 URL https://www.gw-openscience.org/events/GW170608/.
LIGO Scientific Collaboration and Virgo Collaboration. Data release for event GW170814. 2017 URL https://www.gw-openscience.org/events/GW170814/.
LIGO Scientific Collaboration and Virgo Collaboration. Data release for event GW170817. 2017 URL https://www.gw-openscience.org/events/GW170817/.
Martynov, D.V., et al. Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Phys Rev D, 93, 2016, 112004 URL https://link.aps.org/doi/10.1103/PhysRevD.93.112004.
Adhikari, R., Sensitivity and noise analysis of 4 km laser interferometric gravitational wave antennae. [Ph.D. thesis], 2004, Massachusetts Institute of Technology.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. A guide to LIGO-virgo detector noise and extraction of transient gravitational-wave signals. 2019 Preprint at https://arxiv.org/abs/1908.11170.
Covas, P.B., et al. Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. Phys Rev D, 97, 2018, 082002 arXiv:1801.07204.
Fiori, I., O2 lines summary. 2017 URL https://logbook.virgo-gw.eu/virgo/?r=40306.
Aasi, J., et al. The characterization of virgo data and its impact on gravitational-wave searches. Classical Quantum Gravity, 29, 2012, 155002 1203.5613.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical Quantum Gravity, 35, 2018, 065010 arXiv:1710.02185.
Davis, D., et al. Improving the sensitivity of Advanced LIGO using noise subtraction. Classical Quantum Gravity, 36, 2019, 055011 arXiv:1809.05348.
Pankow, C., et al. Mitigation of the instrumental noise transient in gravitational-wave data surrounding GW170817. Phys Rev D, 98, 2018, 084016 URL https://link.aps.org/doi/10.1103/PhysRevD.98.084016.
Biwer, C., et al. Validating gravitational-wave detections: The Advanced LIGO hardware injection system. Phys Rev D, 95, 2017, 062002 arXiv:1612.07864.
URL https://cernvm.cern.ch/fs/.
Weitzel D et al. Data access for LIGO on the OSG. In: Proceedings of the practice and experience in advanced research computing 2017 on sustainability, success and impact; 2017.
Ellis, G., Control system design guide. 4th ed., 2012, Butterworth-Heinemann.
Jones, E., et al. SciPy: Open source scientific tools for Python. 2001 URL http://www.scipy.org/.
Nyquist, H., Certain factors affecting telegraph speed. Bell Syst Tech J 3 (1924), 324–346.
Nyquist, H., Certain topics in telegraph transmission theory. Trans AIEE 47 (1928), 617–644.
Shannon, C.E., Communication in the presence of noise. Proc IRE 37 (1949), 10–21.
Koziol, Q., Robinson, D., HDF5. 2018, 10.11578/dc.20180330.1.
LIGO Scientific Collaboration and Virgo Collaboration. Specification of a common data frame format for interferometric gravitational wave detectors: Tech. rep. VIR-067A-08., 2009 URL https://dcc.ligo.org/LIGO-T970130/public.
Usman, S.A., et al. The PyCBC search for gravitational waves from compact binary coalescence. Classical Quantum Gravity, 33, 2016, 215004 arXiv:1508.02357.
Sachdev, S., et al. The GstLAL search analysis methods for compact binary mergers in Advanced LIGO's second and Advanced Virgo's first observing runs. Phys Rev D, 2019 [submitted for publication]. Preprint at https://arxiv.org/abs/1901.08580.
Cody, M., et al. Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data. Phys Rev D, 95, 2017, 042001 arXiv:1604.04324.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. Search for subsolar mass ultracompact binaries in Advanced LIGO's second observing run. Phys Rev Lett, 123, 2019, 161102.
Klimenko, S., et al. Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors. Phys Rev D, 93, 2016, 042004 arXiv:1511.05999.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Phys Rev D, 100, 2019, 024017.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. An optically targeted search for gravitational waves emitted by core-collapse Supernovae during the first and second observing runs of Advanced LIGO and Advanced Virgo. 2019 Preprint at https://arxiv.org/abs/1908.03584.
Lynch, R., Vitale, S., Essick, R., Katsavounidis, E., Robinet, F., Information-theoretic approach to the gravitational-wave burst detection problem. Phys Rev D, 95, 2017, 104046.
Littenberg, T.B., Kanner, J.B., Cornish, N.J., Millhouse, M., Enabling high confidence detections of gravitational-wave bursts. Phys Rev D, 94, 2016, 044050.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Phys Rev D, 100, 2019, 061101 URL https://link.aps.org/doi/10.1103/PhysRevD.100.024004.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Phys Rev D, 99, 2019, 122002 URL https://link.aps.org/doi/10.1103/PhysRevD.99.122002.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. Searches for gravitational waves from known pulsars at two harmonics in 2015–2017 LIGO data. Astrophys J, 879, 2015, 10.
Search for gravitational waves from scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Phys Rev D, 95, 2017, 122003.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. Upper limits on the stochastic gravitational-wave background from Advanced LIGO's first observing run. Phys Rev Lett, 118, 2017, 121101 URL https://link.aps.org/doi/10.1103/PhysRevLett.118.121101.
Abbott, B.P., et al., LIGO Scientific Collaboration, Virgo Collaboration. Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Phys Rev D, 100, 2019, 061101 URL https://link.aps.org/doi/10.1103/PhysRevD.100.061101.
LIGO Scientific Collaboration and Virgo Collaboration. H1 lines cleaning file for O1 - version 3. 2015 URL https://www.gw-openscience.org/static/speclines/o1/O1LinesToBeCleaned_H1_v3.txt.
LIGO Scientific Collaboration and Virgo Collaboration. L1 lines cleaning file for O1 - version 3. 2015 URL https://www.gw-openscience.org/static/speclines/o1/O1LinesToBeCleaned_L1_v3.txt.
LIGO Scientific Collaboration and Virgo Collaboration. H1 lines cleaning file for O2 - version 2. 2019 URL https://www.gw-openscience.org/static/speclines/o2/O2LinesToBeCleaned_H1_v2.txt.
LIGO Scientific Collaboration and Virgo Collaboration. L1 lines cleaning file for O2 - version 2. 2019 URL https://www.gw-openscience.org/static/speclines/o2/O2LinesToBeCleaned_L1_v2.txt.
LIGO Scientific Collaboration and Virgo Collaboration. List of lines for Virgo V1 during O2 - 20190209, version 1. 2019 URL https://www.gw-openscience.org/static/speclines/o2/O2_lines_Virgo_V1.txt.
LIGO Scientific Collaboration and Virgo Collaboration. Data quality vetoes applied to the analysis of GW150914. 2016 https://dcc.ligo.org/public/0123/T1600011/003/DQdoc.pdf.
Kluyver, T., et al. Jupyter notebooks – a publishing format for reproducible computational workflows. Positioning and power in academic publishing: Players, agents and agendas, 2016, IOS Press, 87–90.
Macleod, D., et al. Source code for: GWpy software. 2019, 10.5281/zenodo.2603187.
Home page for: GstLAL – https://wiki.ligo.org/Computing/DASWG/GstLAL.
Ashton, G., et al. BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys J Suppl Ser, 241, 2019, 27, 10.5281/zenodo.2602178.
Veitch, J., et al. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the lalinference software library. Phys Rev D, 91, 2015, 042003.
Littenberg, T.B., Cornish, N.J., Bayesian inference for spectral estimation of gravitational wave detector noise. Phys Rev D, 91, 2015, 084034.
Gravitational wave open science center (GWOSC). http://www.gw-openscience.org.
GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. 2018, 10.7935/82H3-HH23 URL https://dcc.ligo.org/LIGO-P1800307/public.
How to acknowledge use of LIGO/Virgo data through GWOSC. https://www.gw-openscience.org/acknowledgement/.