Overtopping; Levees and dikes; Breach; Laboratory experiments; Dike geometry
Abstract :
[en] Laboratory experiments were conducted to assess the influence of dike geometry on the breaching of non-cohesive homogeneous fluvial dikes. Both the channel-side and floodplain-side dike slopes and the crest length were varied systematically. The time-evolution of the breach discharge and breach width was monitored. Dikes having a larger volume per unit width lead to a more gradual increase in breach discharge and in breach width during the first stage of breach expansion (i.e., phase of rapid erosion). In contrast, the later stage of gradual breach widening is less influenced by the dike geometry. The breach hydrographs were observed to follow three distinct patterns, which are explained based on the relative magnitude of two characteristic time scales and of a normalized form of the dike unit volume.
Disciplines :
Civil engineering
Author, co-author :
Schmitz, Vincent ; Université de Liège - ULiège > Département ArGEnCo > HECE (Hydraulics in Environnemental and Civil Engineering)
Erpicum, Sébastien ; Université de Liège - ULiège > Scientifiques attachés au Doyen (Sc.appliquées)
El Kadi Abderrezzak, Kamal
Rifai, Ismail
Archambeau, Pierre ; Université de Liège - ULiège > Département ArGEnCo > HECE (Hydraulics in Environnemental and Civil Engineering)
Pirotton, Michel ; Université de Liège - ULiège > Département ArGEnCo > HECE (Hydraulics in Environnemental and Civil Engineering)
Dewals, Benjamin ; Université de Liège - ULiège > Département ArGEnCo > Hydraulics in Environmental and Civil Engineering
Language :
English
Title :
Overtopping-induced failure of non–cohesive homogeneous fluvial dikes: effect of dike geometry on breach discharge and widening
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aerts, J. C., Botzen, W. J., Clarke, K. C., Cutter, S. L., Hall, J. W., Merz, B., Kunreuther, H., Mysiak, J., Surminski, S., & Kunreuther, H. (2018). Integrating human behaviour dynamics into flood disaster risk assessment. Nature Climate Change, 8(3), 193–199. https://doi.org/10.1038/s41558-018-0085-1
Amaral, S., Caldeira, L., Viseu, T., & Ferreira, R. M. (2020). Designing experiments to study dam breach hydraulic phenomena. Journal of Hydraulic Engineering, 146(4), 04020014. https://doi.org/10.1061/(asce)hy.1943-7900.0001678
ASCE/EWRI Task Committee on Dam/Levee Breaching. (2011). Earthen embankment breaching. Journal of Hydraulic Engineering, 137(12), 1549–1564.
Bento, A. M., Amaral, S., Viseu, T., Cardoso, R., & Ferreira, R. M. (2017). Direct estimate of the breach hydrograph of an overtopped Earth dam. Journal of Hydraulic Engineering, 143(6), 06017004. https://doi.org/10.1061/(asce)hy.1943-7900.0001294
Bhattarai, P. K., Nakagawa, H., Kawaike, K., & Zhang, H. (2015). Study of breach characteristics and scour pattern for overtopping induced river dyke breach. In E-proceedings of the 36th IAHR world congress.
Charrier, G. (2015). Etude expérimentale des ruptures de digues fluviales par surverse. PhD thesis. University of Aix-Marseille (in french).
Coleman, S. E., Andrews, D. P., & Webby, M. G. (2002). Overtopping breaching of noncohesive homogeneous embankments. Journal of Hydraulic Engineering, 128(9), 829–838. https://doi.org/10.1061/(asce)0733-9429(2002)128:9(829)
Danka, J., & Zhang, L. M. (2015). Dike failure mechanisms and breaching parameters. Journal of Geotechnical and Geoenvironmental Engineering, 141(9), 04015039. https://doi.org/10.1061/(asce)gt.1943-5606.0001335
Di Baldassarre, G., Kreibich, H., Vorogushyn, S., Aerts, J., Arnbjerg-Nielsen, K., Barendrecht, M., et al. (2018). Hess opinions: An interdisciplinary research agenda to explore the unintended consequences of structural flood protection. Hydrology and Earth System Sciences, 22(11), 5629–5637. https://doi.org/10.5194/hess-22-5629-2018
Dou, S. T., Wang, D. W., Yu, M. H., & Liang, Y. J. (2014). Numerical modeling of the lateral widening of levee breach by overtopping in a flume with 180 bend. Natural Hazards and Earth System Sciences, 14(1), 11–20. https://doi.org/10.5194/nhess-14-11-2014
Elalfy, E., Tabrizi, A. A., & Chaudhry, M. H. (2018). Numerical and experimental modeling of levee breach including slumping failure of breach sides. Journal of Hydraulic Engineering, 144(2), 04017066. https://doi.org/10.1061/(asce)hy.1943-7900.0001406
El kadi Abderrezzak, K., Die Moran, A., Mosselman, E., Bouchard, J. P., Habersack, H., Lebert, F., & Aelbrecht, D. (2014). A physical, movable-bed model for non-uniform sediment transport, fluvial erosion and bank failure in rivers. Journal of Hydro-environment Research, 8(2), 95–114. https://doi.org/10.1016/j.jher.2013.09.004
Faeh, R. (2007). Numerical modeling of breach erosion of river embankments. Journal of Hydraulic Engineering, 133(9), 1000–1009. https://doi.org/10.1061/(asce)0733-9429(2007)133:9(1000)
Islam, M. (2012). Study on levee breach and successive disasters in low-land through numerical and experimental approaches. PhD thesis. Nagoya university (Japan).
Jandora, J., & Říha, J. (2008). The failure of embankment dams due to overtopping. Vutium.
Kakinuma, T., & Shimizu, Y. (2014). Large-scale experiment and numerical modeling of a riverine levee breach. Journal of Hydraulic Engineering, 140(9), 04014039. https://doi.org/10.1061/(asce)hy.1943-7900.0000902
Kakinuma, T., Tobita, D., Yokoyama, H., & Takeda, A. (2013). Levee breach observation at Chiyoda experimental flume. In Advances in river sediment research (pp. 1013–1020). Kyoto, Japan.
LaRocque, L. A., Elkholy, M., Hanif Chaudhry, M., & Imran, J. (2013). Experiments on urban flooding caused by a levee breach. Journal of Hydraulic Engineering, 139(9), 960–973. https://doi.org/10.1061/(asce)hy.1943-7900.0000754
Michelazzo, G., Oumeraci, H., & Paris, E. (2015). Laboratory study on 3D flow structures induced by zero-height side weir and implications for 1D modeling. Journal of Hydraulic Engineering, 141(10), 04015023. https://doi.org/10.1061/(asce)hy.1943-7900.0001027
Michelazzo, G., Oumeraci, H., & Paris, E. (2018a). New hypothesis for the final equilibrium stage of a river levee breach due to overflow. Water Resources Research, 54(7), 4277–4293. https://doi.org/10.1029/2017wr021378
Michelazzo, G., Paris, E., & Solari, L. (2018b). On the vulnerability of river levees induced by seepage. Journal of Flood Risk Management, 11, S677–S686. https://doi.org/10.1111/jfr3.12261
Morris, M. W., Hassan, M. A. A. M., & Vaskinn, K. A. (2007). Breach formation: Field test and laboratory experiments. Journal of Hydraulic Research, 45(1), 9–17. https://doi.org/10.1080/00221686.2007.9521828
Müller, C., Frank, P. J., & Hager, W. H. (2016). Dyke overtopping: Effects of shape and headwater elevation. Journal of Hydraulic Research, 54(4), 410–422. https://doi.org/10.1080/00221686.2016.1170072
Orlandini, S., Moretti, G., & Albertson, J. D. (2015). Evidence of an emerging levee failure mechanism causing disastrous floods in Italy. Water Resources Research, 51(10), 7995–8011. https://doi.org/10.1002/2015wr017426
Özer, I. E., van Damme, M., & Jonkman, S. N. (2020). Towards an International Levee Performance Database (ILPD) and its use for macro-scale analysis of levee breaches and failures. Water, 12(1), 119.
Pickert, G., Weitbrecht, V., & Bieberstein, A. (2011). Breaching of overtopped river embankments controlled by apparent cohesion. Journal of Hydraulic Research, 49(2), 143–156. https://doi.org/10.1080/00221686.2011.552468
Rifai, I., El Kadi Abderrezzak, K., Erpicum, S., Archambeau, P., Violeau, D., Pirotton, M., & Dewals, B. (2018). Floodplain backwater effect on overtopping induced fluvial dike failure. Water Resources Research, 54(11), 9060–9073. https://doi.org/10.1029/2017wr022492
Rifai, I., El Kadi Abderrezzak, K., Erpicum, S., Archambeau, P., Violeau, D., Pirotton, M., & Dewals, B. (2019). Flow and detailed 3D morphodynamic data from laboratory experiments of fluvial dike breaching. Scientific Data, 6, 53. https://doi.org/10.1038/s41597-019-0057-y
Rifai, I., El Kadi Abderrezzak, K., Hager, W. H., Erpicum, S., Archambeau, P., Violeau, D., et al. (2021). Apparent cohesion effects on overtopping induced fluvial dike breaching. Journal of Hydraulic Research, 59(1), 75–87. https://doi.org/10.1080/00221686.2020.1714760
Rifai, I., Erpicum, S., Archambeau, P., Violeau, D., Pirotton, M., El Kadi Abderrezzak, K., & Dewals, B. (2017). Overtopping induced failure of noncohesive, homogeneous fluvial dikes. Water Resources Research, 53(4), 3373–3386. https://doi.org/10.1002/2016wr020053
Rifai, I., Schmitz, V., Erpicum, S., Archambeau, P., Violeau, D., Pirotton, M., et al. (2020). Continuous monitoring of fluvial dike breaching by a laser profilometry technique. Water Resources Research, 56, e2019WR026941. https://doi.org/10.1029/2019WR026941
Sadeghi, S., Hakimzadeh, H., & Babaeian Amini, A. (2020). Experimental investigation into outflow hydrographs of nonhomogeneous Earth dam breaching due to overtopping. Journal of Hydraulic Engineering, 146(1), 04019049. https://doi.org/10.1061/(asce)hy.1943-7900.0001664
Schmocker, L., Frank, P. J., & Hager, W. H. (2014). Overtopping dike-breach: Effect of grain size distribution. Journal of Hydraulic Research, 52(4), 559–564. https://doi.org/10.1080/00221686.2013.878403
Schmocker, L., & Hager, W. H. (2009). Modelling dike breaching due to overtopping. Journal of Hydraulic Research, 47(5), 585–597. https://doi.org/10.3826/jhr.2009.3586
Schmocker, L., & Hager, W. H. (2012). Plane dike-breach due to overtopping: Effects of sediment, dike height and discharge. Journal of Hydraulic Research, 50(6), 576–586. https://doi.org/10.1080/00221686.2012.713034
Squazzoni, F., Polhill, J. G., Edmonds, B., Ahrweiler, P., Antosz, P., Scholz, G., & Gilbert, N. (2020). Computational models that matter during a global pandemic outbreak: A call to action. Journal of Artificial Societies and Social Simulation, 23(2). https://doi.org/10.18564/jasss.4298
Van Lanen, H. A., Laaha, G., Kingston, D. G., Gauster, T., Ionita, M., Vidal, J. P., et al. (2016). Hydrology needed to manage droughts: The 2015 European case. Hydrological Processes, 30(17), 3097–3104. https://doi.org/10.1002/hyp.10838
Viero, D. P., D’Alpaos, A., Carniello, L., & Defina, A. (2013). Mathematical modeling of flooding due to river bank failure. Advances in Water Resources, 59, 82–94. https://doi.org/10.1016/j.advwatres.2013.05.011
Vorogushyn, S., Merz, B., & Apel, H. (2009). Development of dike fragility curves for piping and micro-instability breach mechanisms. Natural Hazards and Earth System Sciences, 9(4), 1383–1401. https://doi.org/10.5194/nhess-9-1383-2009
Vorogushyn, S., Merz, B., Lindenschmidt, K. E., & Apel, H. (2010). A new methodology for flood hazard assessment considering dike breaches. Water Resources Research, 46, W08541. https://doi.org/10.1029/2009wr008475
Ward, P. J., de Ruiter, M. C., Mård, J., Schröter, K., Van Loon, A., Veldkamp, T., et al. (2020). The need to integrate flood and drought disaster risk reduction strategies. Water Security, 11, 100070. https://doi.org/10.1016/j.wasec.2020.100070
Ward, P. J., Jongman, B., Aerts, J. C., Bates, P. D., Botzen, W. J., Loaiza, A. D., et al. (2017). A global framework for future costs and benefits of river-flood protection in urban areas. Nature Climate Change, 7(9), 642–646. https://doi.org/10.1038/nclimate3350
Wei, H., Yu, M., Wang, D., & Li, Y. (2016). Overtopping breaching of river levees constructed with cohesive sediments. Natural Hazards and Earth System Sciences, 16(7), 1541–1551. https://doi.org/10.5194/nhess-16-1541-2016
Wu, S., Yu, M., Wei, H., Liang, Y., & Zeng, J. (2018). Non-symmetrical levee breaching processes in a channel bend due to overtopping. International Journal of Sediment Research, 33(2), 208–215. https://doi.org/10.1016/j.ijsrc.2017.09.007
Wu, W. (2013). Simplified physically based model of earthen embankment breaching. Journal of Hydraulic Engineering, 139(8), 837–851. https://doi.org/10.1061/(asce)hy.1943-7900.0000741
Yu, M. H., Wei, H. Y., Liang, Y. J., & Zhao, Y. (2013). Investigation of non-cohesive levee breach by overtopping flow. Journal of Hydrodynamics, Ser. B, 25(4), 572–579. https://doi.org/10.1016/s1001-6058(11)60398-4
Zhang, L., Peng, M., Chang, D., & Xu, Y. (2016). Dam failure mechanisms and risk assessment. John Wiley & Sons.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.