Article (Scientific journals)
Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems?
Zubieta, Angel S; Savian, Jean V; de Souza Filho, William et al.
2020In Science of the Total Environment, 754, p. 142029
Peer Reviewed verified by ORBi
 

Files


Full Text
1-s2.0-S0048969720355583-main.pdf
Publisher postprint (961.77 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
grasslands; climate-smart livestock; carbon footprint; animla production; emission intensity; sward structure
Abstract :
[en] Agriculture, and livestock production in particular, is criticized for being a contributor to global environmental change, including emissions of greenhouse gases (GHG). Methane (CH4) from grazing ruminants accounts for most of livestock's carbon footprint because a large share of them are reared under suboptimal grazing conditions, usually resulting in both low herbage intake and animal performance. Consequently, the CH4 quota attributed to animal maintenance is spread across few or no animal outputs, increasing the CH4 intensity [g CH4/kg live weight (LW) gain or g CH4/kg milk yield]. In this review, the generalized idea relating tropical pastures with low quality and intrinsically higher CH4 intensity is challenged by showing evidence that emissions from animals grazing tropical pastures can equal those of temperate grasses. We demonstrate the medium-to-high mitigation potential of some grazing management strategies to mitigate CH4 emissions from grazing ruminants and stress the predominant role that sward canopy structure (e.g., height) has over animal behavioral responses (e.g., intake rate), daily forage intake and resulting CH4 emissions. From this ecological perspective, we identify a grazing management concept aiming to offer the best sward structure that allows animals to optimize their daily herbage intake, creating opportunities to reduce CH4 intensity. We show the trade-off between animal performance and CH4 intensity, stressing that mitigation is substantial when grazing management is conducted under light-to-moderate intensities and optimize herbage intake and animal performance. We conclude that optimizing LW gain of grazing sheep and cattle to a threshold of 0.14 and 0.7 kg/day, respectively, would dramatically reduce CH4 intensity to approximately 0.2 kg CH4/kg LW gain, as observed in some intensive feeding systems. This could represent a mitigation potential of around 55% for livestock commodities in pasture-based systems. Our results offer new insights to the debate concerning mitigation of environmental impacts of pastoral ecosystems.
Disciplines :
Animal production & animal husbandry
Author, co-author :
Zubieta, Angel S
Savian, Jean V
de Souza Filho, William
Wallau, Marcelo Osorio
Gómez, Alejandra Martin
Bindelle, Jérôme  ;  Université de Liège - ULiège > Département GxABT > Ingénierie des productions animales et nutrition
Bonnet, Olivier J F
de Faccio Carvalho, Paulo César
Language :
English
Title :
Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems?
Publication date :
2020
Journal title :
Science of the Total Environment
ISSN :
0048-9697
eISSN :
1879-1026
Publisher :
Elsevier, Netherlands
Volume :
754
Pages :
142029
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 21 June 2021

Statistics


Number of views
63 (2 by ULiège)
Number of downloads
1 (1 by ULiège)

Scopus citations®
 
29
Scopus citations®
without self-citations
24
OpenCitations
 
15

Bibliography


Similar publications



Contact ORBi