[en] To avoid losses from sprouting during potato storage, the anti-sprouting agent chlorpropham [CIPC] has been widely used over the past few decades. However, the European Union recently decided not to authorize the renewal of CIPC, prompting the value chain to find alternative treatments. We assessed for three years the potential of pre- and post-harvest anti-sprouting treatments to replace CIPC using four potato-processing varieties. Pre-harvest application of maleic hydrazide [MH] and post-harvest applications of 3-decen-2-one, 1,4-dimethylnapthalene [1,4-DMN] and CIPC were performed following supplier’s recommendations. In addition, we evaluated the potential of 3-decen-2-one and 1,4-DMN to prolong the efficacy of pre-harvest MH treatment anti-sprouting activity during storage. All molecules significantly reduced sprouting after seven months of storage compared with the untreated control group. MH, 3-decen-2-one, 1,4-DMN and CIPC displayed respectively 86.9 %; 77.9 %, 73.6 % and 99.8 % of efficacy to control sprout weight and 79.4 %; 73.4 %, 68.4 % and 96.9 % of efficacy to control sprout length. Our results suggest that using 3-decen-2-one and 1,4-DMN in combination with MH do not bring additional benefit to control sprouting. Because differences in dormancies could be observed between varieties, we also showed that the efficacy of post-harvest treatments is genotype-dependent, while MH pre-harvest treatment is effective equally for all varieties. Applications of CIPC and MH led to detectable residues in tubers, while no residue of 1,4-DMN has been detected in tubers treated with this molecule (< LOQ). We concluded that treatments with MH, 1,4-DMN and 3-decen-2-one are valuable alternatives to CIPC to control sprouting of processing potatoes.
Alexandre, E.M.C., Rodrigues, I.M., Saraiva, J.A., Influence of thermal and pressure treatments on inhibition of potato tuber sprouting. Czech. J. Food Sci. 33:6 (2015), 524–530, 10.17221/241/2015-CJFS.
Balleix, M., personal communication. Analytical Service Manager, Service Expertise Conseil Contaminants, Eurofins Scientific France. ContaminantsEAF@eurofinsFR.com.
Bates, D., Maechler, M., Matrix: sparse and Dense matrix classes and methods. R Package Version 1.2-18, 2019 https://CRAN.R-project.org/package=Matrix.
Bates, D., Maechler, M., Bolker, B., Walker, S., Fitting linear mixed-effects models using (lme4). J. Stat. Softw. 67:1 (2015), 1–48, 10.18637/jss.v067.i01.
Blenkinsop, R.W., Copp, L.J., Yada, R.Y., Marangoni, A.G., Effect of chlorpropham (CIPC) on carbohydrate metabolism of potato tubers during storage. Food Res. Int. 35:7 (2002), 651–655, 10.1016/S0963-9969(01)00168-5.
Caldiz, D.O., Fernandez, L.V., Inchausti, M.H., Maleic hydrazide effects on tuber yield, sprouting characteristics, and french fry processing quality in various potato (Solanum tuberosum l.) cultivars grown under Argentinian conditions. Am. J. Potato Res. 78:2 (2001), 119–128, 10.1007/BF02874767.
Campbell, M.A., D'Annibale, O., Exposure of Potato Tuber to Varying Concentrations of 1, 4-Dimethylnaphthalene Decrease the Expression of Transcripts for Plastid Proteins. Am. J. Potato Res. 93:3 (2016), 278–287, 10.1007/s12230-016-9504-x.
Campbell, M.A., Gleichsner, A., Alsbury, R., Horvath, D., Suttle, J., The sprout inhibitors chlorpropham and 1,4-dimethylnaphthalene elicit different transcriptional profiles and do not suppress growth through a prolongation of the dormant state. Plant Mol. Biol. 73:1-2 (2010), 181–189, 10.1007/s11103-010-9607-6.
Campbell, M.A., Gleichsner, A., Hilldorfer, L., Horvath, D., Suttle, J., The sprout inhibitor 1,4-dimethylnaphthalene induces the expression of the cell cycle inhibitors KRP1 and KRP2 in potatoes. Funct. Integr. Genomics 12:3 (2012), 533–541.
Coleman, W.K., Dormancy release in potato tubers: a review. Am. Potato J. 64:2 (1987), 57–68, 10.1007/BF02853438.
Corsini, D., Stallknecht, G., Sparks, W., Changes in chlorpropham residues in stored potatoes. Am. Potato J. 56:1 (1979), 43–50, 10.1007/BF02851122.
Daniels-Lake, B.J., The Combined Effect of CO2 and Ethylene Sprout Inhibitor on the Fry Colour of Stored Potatoes (Solanum tuberosum L.). Potato Res. 56:2 (2013), 115–126, 10.1007/s11540-013-9234-0.
Daniels-Lake, B.J., Prange, R.K., The canon of potato science: 41. Sprouting. Potato Res. 50:3-4 (2007), 379–382, 10.1007/s11540-008-9065-6.
Delaplace, P., Caractérisation physiologique et biochimique du processus de vieillissement du tubercule de pomme de terre (Solanum tuberosum L.), Académie universitaire Wallonie-Europe. Faculté universitaire des sciences agronomiques de Gembloux, 2007, p. 171 https://orbi.ulg.ac.be/bitstream/2268/158541/1/20071219_DelaplaceP_PhD.pdf.
Delaplace, P., Brostaux, Y., Fauconnier, M.-L., du Jardin, P., Potato (Solanum tuberosum L.) tuber physiological age index is a valid reference frame in postharvest ageing studies. Postharvest Biol. Technol. 50:1 (2008), 103–106, 10.1016/j.postharvbio.2008.03.002.
Dias, A.I., Duncan, H.J., Residues of free and bound maleic hydrazide in potato tubers. Potato Res. 42:1 (1999), 89–93, 10.1007/bf02358394.
Douglas, L., MacKinnon, G., Cook, G., Duncan, H., Briddon, A., Seamark, S., Determination of chlorpropham (CIPC) residues, in the concrete flooring of potato stores, using quantitative (HPLC UV/VIS) and qualitative (GCMS) methods. Chemosphere 195 (2018), 119–124, 10.1016/j.chemosphere.2017.12.010.
EPA Environmental Protection Agency (EPA), 3-Decen-2-One; Exemption from the Requirement of a Tolerance. Environmental Protection Agency (EPA). EPA-HQ-OPP-2010-0065FRL-9378-1, Vol. 78, 2013, Federal Register No. 34 / Wednesday, February 20, 2013 / Rules and Regulations, 11760-11766. https://www.govinfo.gov/content/pkg/FR-2013-02-20/pdf/2013-03758.pdf (accessed 11 December 2020).
EURL, EU Reference laboratories for residues of pesticides. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. Document N° SANTE/11945/2015 (Supersedes Document No. SANCO/12571/2013), 2015 (Accessed 25 November 2020) https://www.eurl-pesticides.eu/library/docs/allcrl/AqcGuidance_SANTE_2015_11945.pdf.
EURL-FV, EU Reference Laboratory-FV (EURL-FV) Dutch Mini-luke (NL) Extraction Method Followed by LC and GC–MS/MS for Multiresidue Analysis of Pesticides in Fruits and Vegetables. 2014 (Accessed 25 November 2020) https://www.eurl-pesticides.eu/userfiles/file/NL-miniLuke-extraction-method.pdf.
European Commission, European commission (EC), directorate general for health and food safety, safety of the food Chain pesticides and biocides. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. Document N° SANTE/11813/2017 (21–22 November 2017 rev.0), 2017 (Accessed 25 November 2020) https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf.
European Commission, Commission Implementing Regulation (EU) 2019/989 of 17 June 2019 Concerning the Non-renewal of Approval of the Active Substance Chlorpropham, in Accordance With Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (EU) No 540/2011. 2019 (Accessed 18 June 2019) https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32019R0989&from=EN.
European Commission, European Pesticides Database, Pesticides EU-MRLs, Regulation (EC) No 396/2005. 2019 (accessed 19 November 2020) https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=EN.
European Food Safety Authority (EFSA), Arena, M., Auteri, D., Barmaz, S., Bellisai, G., Brancato, A., Brocca, D., Bura, L., Byers, H., Chiusolo, A., Court Marques, D., Crivellente, F., De Lentdecker, C., De Maglie, M., Egsmose, M., Erdos, Z., Fait, G., Ferreira, L., Goumenou, M., Greco, L., Ippolito, A., Istace, F., Jarrah, S., Kardassi, D., Leuschner, R., Lythgo, C., Magrans, J.O., Medina, P., Miron, I., Molnar, T., Nougadere, A., Padovani, L., Parra Morte, J.M., Pedersen, R., Reich, H., Sacchi, A., Santos, M., Serafimova, R., Sharp, R., Stanek, A., Streissl, F., Sturma, J., Szentes, C., Tarazona, J., Terron, A., Theobald, A., Vagenende, B., Verani, A., Villamar-Bouza, L., Peer review of the pesticide risk assessment of the active substance chlorpropham. EFSA J., 15, 2017, 25, 10.2903/j.efsa.2017.4903 e04903 (7).
Ezekiel, R., Singh, B., Effect of cooking and processing on CIPC residue concentrations in potatoes and processed potato products. Potato Res., 50(2), 2008, 175, 10.1007/s11540-008-9043-z.
Ezekiel, R., Singh, B., Mehta, A., Kumar, D., Dutta, R., Changes in processing quality of potatoes at different low holding temperatures. Indian J. Hortic. 68:3 (2011), 408–412.
FAO, Food and Agriculture Organization of the United Nations (FAO). 2018 (accessed 2018) http://www.fao.org/faostat/en/#data/QC.
Fox, J., Weisberg, S., An R Companion to Applied Regression, 3rd edition. 2019, Sage, Thousand Oaks (CA).
Health Canada, Health Canada pest management regulatory agency. Registration Decision RD2014-01, 3-decen-2-one, 2014 (accessed 11 December 2020) https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/cps-spc/alt_formats/pdf/pubs/pest/decisions/rd2014-01/rd2014-01-eng.pdf.
Hoffman, I., Parups, E.V., Mode of action of maleic hydrazide in relation to residues in crops and soils. Gunther, F.A., (eds.) Residue Reviews/Rückstands-Berichte. Reviews of Environmental Contamination and Toxicology, Vol. 7, 1964, Springer, New York, 96–113, 10.1007/978-1-4615-8389-9_6.
Hope, R.M., Rmisc: Rmisc: Ryan Miscellaneous, R Package Version 1.5. 2013 https://CRAN.R-project.org/package=Rmisc.
Immaraju, J.A., Personal communication. Ph.D., Sr. Director of Product Commercialization & International Product Development, 2021, AMVAC Chemical Corporation, 4695 MacArthur Court, Suite 1200, Newport Beach, California 92660, USA.
Kennedy, E.J., Smith, O., Response of the potato to field application of Maleic Hydrazide. Am. Potato J. 28 (1951), 701–712, 10.1007/BF03030753.
Kleinkopf, G.E., Oberg, N.A., Olsen, N.L., Sprout inhibition in storage: current status, new chemistries and natural compounds. Am. J. Potato Res. 80:5 (2003), 317–327, 10.1007/BF02854316.
Knowles, L.O., Knowles, N.R., Toxicity and Metabolism of Exogenous α,β-Unsaturated Carbonyls in Potato (Solanum tuberosum L.) tubers. J. Agric. Food Chem. 60:44 (2012), 11173–11181, 10.1021/jf303299n.
Knowles, L.O., Knowles, N.R., Abstracts of Papers Presented at the 98th Annual Meeting of the Potato Association of America Spokane, Washington, USA July 27–31, 2014. Sprout inhibition by α,β-unsaturated aliphatic carbonyls – discovery, chemistry and physiological responses. Am. J. Potato Res. 92 (2015), 175–214, 10.1007/s12230-015-9440-1.
Koffi, G.Y., Remaud-Simeon, M., Due, A.E., Combes, D., Isolation and chemoenzymatic treatment of glycoalkaloids from green, sprouting and rotting Solanum tuberosum potatoes for solanidine recovery. Food Chem. 220 (2017), 257–265, 10.1016/j.foodchem.2016.10.014.
Lenth, R., Emmeans: Estimated Marginal Means, Aka Least-squares Means, R Package Version 1.4.4. 2020 https://CRAN.R-project.org/package=emmeans.
Lewis, J., Thorpe, S., Reynolds, S., The carry‐through of residues of thiabendazole, tecnazene and chlorpropham from potatoes following manufacture into potato crisps and jacket potato crisps. Food Addit. Contam. 13 (1996), 221–229, 10.1080/02652039609374400.
Leu+Gygax AG, Technical sheet. Fazor®, Régulateur de croissance, 2018, Leu+Gygax AG (accessed 12 November 2020) https://shop.leugygax.ch/shop/resources/downloads/Fazor(F).pdf.
Lewis, M.D., Kleinkopf, G.E., Shetty, K.K., Dimethylnaphthalene and diisopropylnaphthalene for potato sprout control in storage: 1. Application methodology and efficacy. Am. Potato J. 74:3 (1997), 183–197, 10.1007/BF02851597.
Lewis, D.J., Thorpe, S.A., Wilkinson, K., Reynolds, S.L., The carry‐through of residues of maleic hydrazide from treated potatoes, following manufacture into potato crisps and ‘jacket’ potato crisps. Food Addit. Contam. 15:5 (1998), 506–509, 10.1080/02652039809374674.
Magdalena, G., Dariusz, M., Losses during storage of potato varieties in relation to weather conditions during the vegetation period and temperatures during long-term storage. Am. J. Potato Res. 95:2 (2018), 130–138, 10.1007/s12230-017-9617-x.
Mahajan, B.Vc., Dhatt, A., Sandhu, K., Garg, A., Effect of CIPC (isopropyl–N (3-chlorophenyl) carbamate) on storage and processing quality of potato. J. Food Agric. Environ. 6:1 (2008), 34–38.
Martin, M., Pomme de terre Hebdo, le journal de la pomme de terre. CNIPT (Comité National Interprofesionnel de la Pomme de Terre), 2012, Arvalis-Institut du végétal, 1–4 Pdt-hebdo-1008.pdf (cnipt.fr).
Martin, M., L'après CIPC: comment s'organiser? ARVALIS - Institut du végétal. 2020 (accessed 22 April 2020) https://www.arvalis-infos.fr/l-apres-cipc-comment-s-organiser–@/view-30943-arvarticle.html.
McKenzie, J., The Effects and Residues of Maleic Hydrazide Within the Potato Crop. Thesis 8298. Thesis 8298, 1989, University of Glasgow. University of Glasgow https://eleanor.lib.gla.ac.uk/record=b1337682.
Mehta, A., Singh, B., Effect of CIPC treatment on post-harvest losses and processing attributes of potato cultivars. Potato J. 42:1 (2015), 18–28.
Mehta, A., Singh, B., Ezekiel, R., Short-term storage of potatoes in heaps: evaluation of CIPC commercial products. Potato J. 39:1 (2012), 48–56.
Newsome, W.H., Residues of maleic hydrazide in field-treated potatoes. J. Agric. Food Chem. 28:6 (1980), 1312–1313, 10.1021/jf60232a060.
Nurit, F., Gomes De Melo, E., Ravanel, P., Tissut, M., Specific Inhibition of Mitosis in Cell Suspension Cultures by a N-Phenylcarbamate Series. Pestic. Biochem. Physiol. 35:3 (1989), 203–210, 10.1016/0048-3575(89)90081-3.
Paterson, D.R., Wittwer, S.H., Weller, L.E., Sell, H.M., The Effect of Preharvest Foliar Sprays of Maleic Hydrazide on Sprout Inhibition and Storage Quality of Potatoes. Plant Physiol. 27:1 (1952), 135–142, 10.1104/pp.27.1.135.
Paul, V., Ezekiel, R., Pandey, R., Acrylamide in processed potato products: progress made and present status. Acta Physiol. Plant., 38(12), 2016, 276, 10.1007/s11738-016-2290-8.
Paul, V., Ezekiel, R., Pandey, R., Sprout suppression on potato: need to look beyond CIPC for more effective and safer alternatives. J. Food Sci. Technol. 53:1 (2016), 1–18, 10.1007/s13197-015-1980-3.
Paul, V., Ezekiel, R., Pandey, R., CIPC as a potato sprout suppressant during storage: present scenario and future perspectives. J. Food Process. 19 (2016), 15–18.
PhytoPRE+, PhytoPRE+2000 Decision Support System. 2000 (accessed 2015) https://www.phytopre.ch/.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, Nlme: linear and nonlinear mixed effects models. R Package Version 3.1-140, 2019 https://CRAN.R-project.org/package=nlme.
Pinhero, R.G., Yada, R.Y., Postharvest storage of potatoes. Chapter 10 Singh, J., Kaur, L., (eds.) Advances in Potato Chemistry and Technology (Second Edition)., 2016, Academic Press, San Diego, 283–314.
Ponnampalam, R., Mondy, N.I., Babish, J.G., A review of environmental and health risks of maleic hydrazide. Regul. Toxicol. Pharmacol. 3 (1983), 38–47, 10.1016/0273-2300(83)90048-x.
Prange, R., Daniels-Lake, B., Jeong, J.-C., Binns, M., Effects of ethylene and 1-methylcyclopropene on potato tuber sprout control and fry color. Am. J. Potato Res. 82 (2005), 123–128, 10.1007/BF02853649.
R Core Team, R: A Language and Environment for Statistical Computing. 2019, R Foundation for Statistical Computing https://www.R-project.org/.
Ravichandran, G., Natarajan, N., Vanangamudi, K., Pathmanabhan, G., Manorama, K., Changes in potato tuber skin histology, behaviour with the application of growth regulators in storage and its performance under field. Indian J. Plant Physiol. 17:2 (2012), 137–144.
Reust, W., Contribution à l'apréciation de l’âge physiologique des tubercules de pommes de terre (Solanum tuberosum L.) et étude de son importance sur le rendement. Ecole polytechnique fédérale de Zurich, 1982, p. 121 http://e-collection.library.ethz.ch/eserv/eth:35983/eth-35983-02.pdf.
Sabba, R.P., Holman, P., Drilias, M.J., Bussan, A.J., Influence of maleic hydrazide on yield and sugars in Atlantic, freedom russet and white pearl potato tubers. Am. J. Potato Res. 86:4 (2009), 272–277, 10.1007/s12230-009-9080-4.
Sarkar, D., Lattice: Multivariate Data Visualization With R. 2008, Springer-Verlag, New York, New York, pp.268, 10.1007/978-0-387-75969-2.
Sorce, C., Lorenzi, R., Ranalli, P., The effects of (S)-(+)-carvone treatments on seed potato tuber dormancy and sprouting. Potato Res. 40:2 (1997), 155–161, 10.1007/BF02358241.
Suttle, J.C., Olson, L.L., Lulai, E.C., The Involvement of Gibberellins in 1,8-Cineole-Mediated Inhibition of Sprout Growth in Russet Burbank Tubers. Am. J. Potato Res. 93:1 (2016), 72–79, 10.1007/s12230-015-9490-4.
Syngenta, Technical sheet of the product Reglone®, Syngenta® Suisse. ®Registered Trademark of a Syngenta Group Company, 2018 (accessed 12 November 2020) https://www.syngenta.ch/sites/g/files/zhg441/f/reglone_f.pdf?token=1533289686.
Syngenta, Technical sheet of the product Spotlight® Plus, Syngenta® Suisse. ® Registered Trademark of a Syngenta Group Company, 2018 (Accessed 12 November 2020) https://www.syngenta.ch/sites/g/files/zhg441/f/spotlight_plus_f.pdf?token=1533289016.
Teper-Bamnolker, P., Dubai, N., Fischer, R., Belausov, E., Zemach, H., Shoseyov, O., Eshel, D., Mint essential oil can induce or inhibit potato sprouting by differential alteration of apical meristem. Planta 232:1 (2010), 179–186, 10.1007/s00425-010-1154-5.
The Fountainhead Group company, Personal communication. The Fountainhead Group company 23 Garden St, New York Mills, NY 13417, United States.
Uppal, D.S., Verma, S.C., Changes in sugar content and invertase activity in tubers of some Indian potato varieties stored at low temperature. Potato Res. 33:1 (1990), 119–123, 10.1007/bf02358136.
Venezian, A., Dor, E., Achdari, G., Plakhine, D., Smirnov, E., Hershenhorn, J., The influence of the plant growth regulator maleic hydrazide on egyptian broomrape early developmental stages and its control efficacy in tomato under greenhouse and field conditions. Front. Plant Sci., 8, 2017, 691, 10.3389/fpls.2017.00691.
Visse-Mansiaux, M., Vanderschuren, H., Soyeurt, H., Dupuis, B., Dormancy models to optimize the storage of various potato cultivars. Scientific committee WPC-ALAP 2018, (eds.) Abstract Book, 10th World Potato Congress – XXVII ALAP 2018 Congress, Cusco, Peru, 2018 p. 90 https://ira.agroscope.ch/en-US/publication/40222.
Visse-Mansiaux, M., Ballmer, T., Tallant, M., Shumbe, L., Vanderschuren, H., Dupuis, B., Sprouting control of the potato varieties using cold storage. Harper, G., Hofman, T., (eds.) EAPR Post Harvest Section Meeting 2019, 2019, The Maids Head Hotel, Norwich, UK Harper, G. (AHDB Potatoes, Sutton Bridge, UK) and Hofman, T. (Certis Europe BV, Maarssen, Netherlands) https://emmabates6.wixsite.com/mysite/abstracts.
Wiberley-Bradford, A.E., Bethke, P.C., Rate of cooling alters chip color, sugar contents, and gene expression profiles in stored potato tubers. Am. J. Potato Res. 94:5 (2017), 534–543, 10.1007/s12230-017-9591-3.
Wickham, H., The split-apply-Combine strategy for data analysis. J. Stat. Softw. 40:1 (2011), 1–29, 10.18637/jss.v040.i01.
Wickham, H., ggplot2: Elegant Graphics for Data Analysis. 2016, Springer-Verlag, New York, 260, 10.1007/978-3-319-24277-4 pp. XVI.
Wilke, C.O., Cowplot: Streamlined Plot Theme and Plot Annotations for’ ggplot2’, R Package Version 1.0.0. 2019 https://CRAN.R-project.org/package=cowplot.
Wiltshire, J.J.J., Cobb, A.H., A review of the physiology of potato tuber dormancy. Ann. Appl. Biol. 129:3 (1996), 553–569, 10.1111/j.1744-7348.1996.tb05776.x.
Yada, R.Y., Coffin, R.H., Keenan, M.K., Fitts, M., Dufault, C., Tai, G.C.C., The effect of maleic hydrazide (potassium salt) on potato yield, sugar content and chip color of Kennebec and Norchip cultivars. Am. Potato J. 68:10 (1991), 705–709, 10.1007/bf02853746.
Yurdakok, B., Baydan, E., Okur, H., Gurcan, I.S., Cytotoxic effects of etephon and maleic hydrazide in Vero, Hep2, HepG2 cells. Drug Chem. Toxicol. 37:4 (2014), 459–465, 10.3109/01480545.2014.884112.
Zweifel Pomy-Chips, A.G., Prüfmethode Zuckerbestimmung in Kartoffeln mittels IC (IC method with conductivity detector), internal document. Code: QS-QP-076, 2018, p. 5.