Article (Scientific journals)
A machine learning approach to screen for preclinical Alzheimer's disease
Gaubert, S.; Houot, M.; Raimondo, Federico et al.
2021In Neurobiology of Aging, 105 (Septembre), p. 205-216
Peer Reviewed verified by ORBi
 

Files


Full Text
A-machine-learning-approach-to-screen-for-preclinical-Alzheimers-diseaseNeurobiology-of-Aging.pdf
Publisher postprint (891.25 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
EEG; Machine learning; Multimodal; Neurodegeneration; Preclinical Alzheimer's disease
Abstract :
[en] Combining multimodal biomarkers could help in the early diagnosis of Alzheimer's disease (AD). We included 304 cognitively normal individuals from the INSIGHT-preAD cohort. Amyloid and neurodegeneration were assessed on 18F-florbetapir and 18F-fluorodeoxyglucose PET, respectively. We used a nested cross-validation approach with non-invasive features (electroencephalography [EEG], APOE4 genotype, demographic, neuropsychological and MRI data) to predict: 1/ amyloid status; 2/ neurodegeneration status; 3/ decline to prodromal AD at 5-year follow-up. Importantly, EEG was most strongly predictive of neurodegeneration, even when reducing the number of channels from 224 down to 4, as 4-channel EEG best predicted neurodegeneration (negative predictive value [NPV] = 82%, positive predictive value [PPV] = 38%, 77% specificity, 45% sensitivity). The combination of demographic, neuropsychological data, APOE4 and hippocampal volumetry most strongly predicted amyloid (80% NPV, 41% PPV, 70% specificity, 58% sensitivity) and most strongly predicted decline to prodromal AD at 5 years (97% NPV, 14% PPV, 83% specificity, 50% sensitivity). Thus, machine learning can help to screen patients at high risk of preclinical AD using non-invasive and affordable biomarkers. © 2021 Elsevier Inc.
Disciplines :
Neurology
Author, co-author :
Gaubert, S.;  Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F75013, France, AP-HP, Hôpital Pitié-Salpêtrière, Institute of Memory and Alzheimer's Disease (IM2A), Centre of excellence of neurodegenerative disease (CoEN) and National Reference Centre for Rare or Early Dementias, Department of Neurology, Paris, F75013, France, Université de Paris, Lariboisière Fernand-Widal Hospital, Cognitive Neurology Center, Paris, France
Houot, M.;  AP-HP, Hôpital Pitié-Salpêtrière, Institute of Memory and Alzheimer's Disease (IM2A), Centre of excellence of neurodegenerative disease (CoEN) and National Reference Centre for Rare or Early Dementias, Department of Neurology, Paris, F75013, France, Center for Clinical Investigation (CIC) Neurosciences, Institut du cerveau et de la Moelle épinière (ICM), Paris, F75013, France, Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l'Hôpital, Paris, F-75013, France
Raimondo, Federico ;  Université de Liège - ULg
Ansart, M.;  Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F75013, France, Inria, Aramis project-team, Paris, F-75013, France
Corsi, M.-C.;  Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F75013, France, Inria, Aramis project-team, Paris, F-75013, France
Naccache, L.;  Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F75013, France, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurophysiology, Paris, F-75013, France
Sitt, J. D.;  Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F75013, France, Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, U992, Gif/Yvette, F-91191, France, NeuroSpin Centre, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, F-91191, France
Habert, M.-O.;  Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U1146, CNRS UMR 7371, Paris, France, AP-HP, Hôpital Pitié-Salpêtrière, Department of Nuclear Medicine, Paris, F-75013, France, Centre d'Acquisition et de Traitement des Images, CATI neuroimaging platform, France
Dubois, B.;  Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F75013, France, AP-HP, Hôpital Pitié-Salpêtrière, Institute of Memory and Alzheimer's Disease (IM2A), Centre of excellence of neurodegenerative disease (CoEN) and National Reference Centre for Rare or Early Dementias, Department of Neurology, Paris, F75013, France
De Vico Fallani, F.;  Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F75013, France, Inria, Aramis project-team, Paris, F-75013, France
Durrleman, S.;  Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F75013, France, Inria, Aramis project-team, Paris, F-75013, France
Epelbaum, S.;  Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, F75013, France, AP-HP, Hôpital Pitié-Salpêtrière, Institute of Memory and Alzheimer's Disease (IM2A), Centre of excellence of neurodegenerative disease (CoEN) and National Reference Centre for Rare or Early Dementias, Department of Neurology, Paris, F75013, France, Inria, Aramis project-team, Paris, F-75013, France
Language :
English
Title :
A machine learning approach to screen for preclinical Alzheimer's disease
Publication date :
2021
Journal title :
Neurobiology of Aging
ISSN :
0197-4580
eISSN :
1558-1497
Publisher :
Elsevier, Netherlands
Volume :
105
Issue :
Septembre
Pages :
205-216
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 17 June 2021

Statistics


Number of views
51 (1 by ULiège)
Number of downloads
1 (1 by ULiège)

Scopus citations®
 
19
Scopus citations®
without self-citations
19
OpenCitations
 
9
OpenAlex citations
 
25

Bibliography


Similar publications



Contact ORBi