Abstract :
[en] Uncoupling protein I (UCP1) is a mitochondrial inner membrane protein that dissipates the proton electrochemical gradient built up by the respiratory chain. its activity is stimulated by free fatty acids and inhibited by purine nucleotides. Here we investigated how active and regulated recombinant UCP1 expressed in yeast at similar to 1 and similar to 10 mu g/mg of total mitochondrial proteins induced changes in the mitochondrial proteome and in oxygen free radical production. Using two-dimensional differential in-gel electrophoresis (2D-DIGE), we found that most of the proteins involved in the response to ectopically expressed UCP1 are related to energy metabolism. We also quantified the cellular H2O2 release in the absence or in the presence of UCP1. Our results suggest that UCP1 has a dual influence on free radical generation. On one side, FFA-activated UCP1 was able to decrease the superoxide anion production, demonstrating that a decrease in the generation of reactive oxygen species is an obligatory outcome of UCP1 activity even in a heterologous context. On the other side, an increase in UCP1 content was concomitant with an increase in the basal release of superoxide anion by mitochondria as a side consequence of the overall increase in oxidative metabolism. (c) 2005 Elsevier Inc. All rights reserved.
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
ULg FSR - Université de Liège. Fonds spéciaux pour la recherche
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
SPW DGO6 - Service Public de Wallonie. Economie, Emploi, Recherche
FSE - Fonds Social Européen
Scopus citations®
without self-citations
11