[en] Mercury (Hg) concentrations have significantly increased in oceans during the last century. This element accumulates in marine fauna and can reach toxic levels. Seafood consumption is the main pathway of methylmercury (MeHg) toxicity in humans. Here, we analyzed total Hg (T-Hg) concentrations in two oceanic squid species (Ommastrephes bartramii and Thysanoteuthis rhombus) of an increasing commercial interest off Martinique, French West Indies. Stable isotope ratios reveal a negative linear relationship between δ15N or δ13C in diamondback squid samples. No significant trend was observed between δ34S values and T-Hg concentrations, contrasting with the sulfate availability and sulfide abundance hypotheses. This adds to a growing body of evidence suggesting Hg methylation via sulfate-reducing bacteria is not the main mechanism driving Hg bioavailability in mesopelagic organisms. All squid samples present T-Hg levels below the maximum safe consumption limit (0.5 ppm), deeming the establishment of a commercial squid fishery in the region safe for human consumption.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Aguilera, S., Measuring squid fishery governance efficacy: a social-ecological system analysis. Int. J. Commons, 12(2), 2018.
Ahmad, N.I., Noh, M.F.M., Mahiyuddin, W.R.W., Jaafar, H., Ishak, I., Azmi, W.N.F.W., Mokhtar, F.A., The mercury levels in crustaceans and cephalopods from Peninsular Malaysia. Environ. Sci. Pollut. Res. 22:17 (2015), 12960–12974.
Amos, H.M., Jacob, D.J., Streets, D.G., Sunderland, E.M., Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Glob. Biogeochem. Cycles 27:2 (2013), 410–421.
Anual, Z.F., Maher, W., Krikowa, F., Hakim, L., Ahmad, N.I., Foster, S., Mercury and risk assessment from consumption of crustaceans, cephalopods and fish from West Peninsular Malaysia. Microchem. J. 140 (2018), 214–221.
Arkhipkin, A.I., Rodhouse, P.G., Pierce, G.J., Sauer, W., Sakai, M., Allcock, L., Zeidberg, L.D., World squid fisheries. Reviews in Fisheries Science & Aquaculture 23:2 (2015), 92–252.
Barghigiani, C., Ristori, T., Biagi, F., De Ranieri, S., Size related mercury accumulations in edible marine species from an area of the Northern Tyrrhenian Sea. Water, air, and soil pollution 124:1 (2000), 169–176.
Blum, J.D., Popp, B.N., Drazen, J.C., Choy, C.A., Johnson, M.W., Methylmercury production below the mixed layer in the North Pacific Ocean. Nat. Geosci. 6:10 (2013), 879–884.
Bosch, A.C., O'Neill, B., Sigge, G.O., Kerwath, S.E., Hoffman, L.C., Heavy metals in marine fish meat and consumer health: a review. J. Sci. Food Agric. 96:1 (2016), 32–48.
Bower, J.R., Miyahara, K., The diamond squid (Thysanoteuthis rhombus): a review of the fishery and recent research in Japan. Fish. Res. 73:1–2 (2005), 1–11.
Bowman, K.L., Hammerschmidt, C.R., Lamborg, C.H., Swarr, G., Mercury in the North Atlantic Ocean: the US GEOTRACES zonal and meridional sections. Deep-Sea Res. II Top. Stud. Oceanogr. 116 (2015), 251–261.
Bowman, K.L., Lamborg, C.H., Agather, A.M., A global perspective on mercury cycling in the ocean. Sci. Total Environ., 710, 2020, 136166.
Bustamante, P., Lahaye, V., Durnez, C., Churlaud, C., Caurant, F., Total and organic Hg concentrations in cephalopods from the North Eastern Atlantic waters: influence of geographical origin and feeding ecology. Sci. Total Environ. 368:2–3 (2006), 585–596.
Cardoso, C., Lourenço, H., Afonso, C., Nunes, M.L., Risk assessment of methyl-mercury intake through cephalopods consumption in Portugal. Food Addit. Contam. Part A 29:1 (2012), 94–103.
Carr, M.K., Jardine, T.D., Doig, L.E., Jones, P.D., Bharadwaj, L., Tendler, B., Lindenschmidt, K.E., Stable sulfur isotopes identify habitat-specific foraging and mercury exposure in a highly mobile fish community. Sci. Total Environ. 586 (2017), 338–346.
Chételat, J., Ackerman, J.T., Eagles-Smith, C.A., Hebert, C.E., Methylmercury exposure in wildlife: a review of the ecological and physiological processes affecting contaminant concentrations and their interpretation. Sci. Total Environ., 711, 2020, 135117.
Choy, C.A., Popp, B.N., Kaneko, J.J., Drazen, J.C., The influence of depth on mercury levels in pelagic fishes and their prey. Proc. Natl. Acad. Sci. 106:33 (2009), 13865–13869.
Clarke, M.R., Cephalopods as prey. III. Cetaceans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351:1343 (1996), 1053–1065.
Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs, OJ L 364, 20.12.2006, p. 5–24. http://data.europa.eu/eli/reg/2006/1881/oj.
de Almeida Rodrigues, P., Ferrari, R.G., dos Santos, L.N., Junior, C.A.C., Mercury in aquatic fauna contamination: a systematic review on its dynamics and potential health risks. J. Environ. Sci. 84 (2019), 205–218.
dos Santos, R.A., Haimovici, M., Cephalopods in the trophic relations off southern Brazil. Bull. Mar. Sci. 71:2 (2002), 753–770.
Eisler, R., Mercury Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review (No. 10). 1987, Fish and Wildlife Service, US Department of the Interior.
Elliott, K.H., Elliott, J.E., Origin of sulfur in diet drives spatial and temporal mercury trends in seabird eggs from Pacific Canada 1968–2015. Environ. Sci. Technol. 50:24 (2016), 13380–13386.
Escobar-Sánchez, O., Galván-Magaña, F., Rosíles-Martínez, R., Biomagnification of mercury and selenium in blue shark Prionace glauca from the Pacific Ocean off Mexico. Biol. Trace Elem. Res. 144:1–3 (2011), 550–559.
Evers, D., The effects of methylmercury on wildlife: a comprehensive review and approach for interpretation. The Encyclopedia of the Anthropocene, 5, 2018, 181–194.
Evers, D.C., Sunderland, E., Technical Information Report on Mercury Monitoring in Biota: Proposed Components Towards a Strategic Long-term Plan for Monitoring Mercury in Fish and Wildlife Globally. 2019, UN Environment Programme, Chemicals and Health Branch, Geneva, Switzerland.
Fernández-Álvarez, F.Á., Braid, H.E., Nigmatullin, C.M., Bolstad, K.S., Haimovici, M., Sánchez, P., Villanueva, R., Global biodiversity of the genus Ommastrephes (Ommastrephidae: Cephalopoda): an allopatric cryptic species complex. Zool. J. Linnean Soc. 190:2 (2020), 460–482.
Food and Drug Administration, FDA fish advice: technical information. Retrieved July 15, 2019, from https://www.epa.gov/fish-tech/epa-fda-fish-advice-technical-information, 2018, November 07.
Gill, G.A., Fitzgerald, W.F., Vertical mercury distributions in the oceans. Geochim. Cosmochim. Acta 52:6 (1988), 1719–1728.
Góngora, E., Braune, B.M., Elliott, K.H., Nitrogen and sulfur isotopes predict variation in mercury levels in Arctic seabird prey. Mar. Pollut. Bull. 135 (2018), 907–914.
Herrera, A., Betancourt, L., Silva, M., Lamelas, P., Melo, A., Coastal fisheries of the Dominican Republic. Coastal Fisheries of Latin America and the Caribbean, 44, 2011, 175–217.
Herrera-Moreno, A., Historical Synthesis of Biophysical Information of Samaná Region. 2005, Dominican Republic.
Jereb, P., Roper, C.F., Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Myopsid and Oegopsid Squids, Volume 2, 2010, FAO.
Judkins, H.L., Vecchione, M., Roper, C.F., Cephalopoda (Mollusca) of the Gulf of Mexico. Gulf of Mexico Origin, Waters and Biota Biodiversity, Vol. 1, 2009.
Kazama, H., Yamaguchi, Y., Harada, Y., Kaneko, N., Mizushima, H., Tsuchiya, K., Tanaka, M., Mercury concentrations in the tissues of blue shark (Prionace glauca) from Sagami Bay and cephalopods from East China Sea. Environ. Pollut., 115192, 2020.
Kidd, K.A., Hesslein, R.H., Fudge, R.J.P., Hallard, K.A., The influence of trophic level as measured by δ 15 N on mercury concentrations in freshwater organisms. In Mercury As a Global Pollutant (pp. 1011–1015), 1995, Springer, Dordrecht.
Lamborg, C.H., Hammerschmidt, C.R., Bowman, K.L., Swarr, G.J., Munson, K.M., Ohnemus, D.C., Saito, M.A., A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 512:7512 (2014), 65–68.
Lamborg, C.H., Hammerschmidt, C.R., Bowman, K.L., An examination of the role of particles in oceanic mercury cycling. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 374(2081), 2016, 20150297.
Lavoie, R.A., Jardine, T.D., Chumchal, M.M., Kidd, K.A., Campbell, L.M., Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ. Sci. Technol. 47:23 (2013), 13385–13394.
Le Croizier, G., Lorrain, A., Sonke, J.E., Hoyos-Padilla, E.M., Galván-Magaña, F., Santana-Morales, O., Block, B., The twilight zone as a major foraging habitat and mercury source for the great white shark. Environ. Sci. Technol. 54:24 (2020), 15872–15882.
Lipiński, M.R., Linkowski, T.B., Food of the squid Ommastrephes bartramii (Lesueur, 1821) from the south-west Atlantic Ocean. S. Afr. J. Mar. Sci. 6:1 (1988), 43–46.
Lischka, A., Lacoue-Labarthe, T., Hoving, H.J.T., Javidpour, J., Pannell, J.L., Merten, V., Bustamante, P., High cadmium and mercury concentrations in the tissues of the orange-back flying squid, Sthenoteuthis pteropus, from the tropical Eastern Atlantic. Ecotoxicol. Environ. Saf. 163 (2018), 323–330.
Liu, G., Cai, Y., O'Driscoll, N., (eds.) Environmental Chemistry and Toxicology of Mercury, 2011, John Wiley & Sons.
Liu, G., Cai, Y., O'Driscoll, N., Feng, X., Jiang, G., Overview of mercury in the environment. Environmental Chemistry and Toxicology of Mercury, 2012, 1–12.
Mason, R.P., Hammerschmidt, C.R., Lamborg, C.H., Bowman, K.L., Swarr, G.J., Shelley, R.U., The air-sea exchange of mercury in the low latitude Pacific and Atlantic Oceans. Deep-Sea Res. I Oceanogr. Res. Pap. 122 (2017), 17–28.
McCutchan, J.H. Jr., Lewis, W.M. Jr., Kendall, C., McGrath, C.C., Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:2 (2003), 378–390.
Minet, A., Manceau, A., Valada-Mennuni, A., Brault-Favrou, M., Churlaud, C., Fort, J., Lacoue-Labarthe, T., Mercury in the tissues of five cephalopods species: First data on the nervous system. Sci. Total Environ., 759, 2021, 143907.
Monteiro, L., Porteiro, F.M., Gonçalves, J.M., Inter-and intra-specific variation of mercury levels in muscle of cephalopods from the Azores. Arquipélago-Life Earth Sci. 10 (1992), 13–22.
Nho, E.Y., Khan, N., Choi, J.Y., Kim, J.S., Park, K.S., Kim, K.S., Determination of toxic metals in cephalopods from South Korea. Anal. Lett. 49:10 (2016), 1578–1588.
Outridge, P.M., Mason, R.P., Wang, F., Guerrero, S., Heimburger-Boavida, L.E., Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environ. Sci. Technol. 52:20 (2018), 11466–11477.
Overholtz, W.J., Link, J.S., Suslowicz, L.E., Consumption of important pelagic fish and squid by predatory fish in the northeastern USA shelf ecosystem with some fishery comparisons. ICES J. Mar. Sci. 57:4 (2000), 1147–1159.
Pau, C., La pêche aux chipilouas (Thysanoteuthis rhombus) en Martinique: rapport technique. 2018 (Rapport final du projet du CRPMEM de Martinique).
Penicaud, V., Lacoue-Labarthe, T., Bustamante, P., Metal bioaccumulation and detoxification processes in cephalopods: a review. Environ. Res. 155 (2017), 123–133.
Peterson, S.H., Ackerman, J.T., Costa, D.P., Marine foraging ecology influences mercury bioaccumulation in deep-diving northern elephant seals. Proc. R. Soc. B Biol. Sci., 282(1810), 2015, 20150710.
Pethybridge, H., Daley, R., Virtue, P., Butler, E.C.V., Cossa, D., Nichols, P.D., Lipid and mercury profiles of 61 mid-trophic species collected off south-eastern Australia. Mar. Freshw. Res. 61:10 (2010), 1092–1108.
Pinzone, M., Budzinski, H., Tasciotti, A., Ody, D., Lepoint, G., Schnitzler, J., Das, K., POPs in free-ranging pilot whales, sperm whales and fin whales from the Mediterranean Sea: influence of biological and ecological factors. Environ. Res. 142 (2015), 185–196.
Pinzone, M., Damseaux, F., Michel, L.N., Das, K., Stable isotope ratios of carbon, nitrogen and sulphur and mercury concentrations as descriptors of trophic ecology and contamination sources of Mediterranean whales. Chemosphere, 237, 2019, 124448.
Post, D.M., Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:3 (2002), 703–718.
R Core Team, R: A Language and Environment for Statistical Computing. 2018, R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/.
Raimundo, Joana, Vale, Carlos, Canário, João, Branco, Vasco, Moura, Isabel, Relations between mercury, methyl-mercury and selenium in tissues of Octopus vulgaris from the Portuguese Coast. Environ. Pollut. 158:6 (2010), 2094–2100.
Raimundo, J., Pereira, P., Vale, C., Canário, J., Gaspar, M., Relations between total mercury, methylmercury and selenium in five tissues of Sepia officinalis captured in the south Portuguese coast. Chemosphere 108 (2014), 190–196.
Rodhouse, P.G., C2. WORLD SQUID RESOURCES. Review of the State of World Marine Fishery Resources. 2005, 175.
Rodhouse, P. G., Pierce, G. J., Nichols, O. C., Sauer, W. H., Arkhipkin, A. I., Laptikhovsky, V. V., … & Sadayasu, K. (2014). Environmental effects on cephalopod population dynamics: implications for management of fisheries. In Advances in Marine Biology (Vol. 67, pp. 99–233). Academic Press.
Roper, C.F., Sweeney, M.J., Nauen, C.E., FAO Species Catalogue: Vol. 3. Cephalopods of the World. An Annotated and Illustrated Catalogue of Species of Interest to Fisheries. FAO Fisheries Synopsis. 3, 1984.
Schuhmacher, M., Batiste, J., Bosque, M.A., Domingo, J.L., Corbella, J., Mercury concentrations in marine species from the coastal area of Tarragona Province, Spain. Dietary intake of mercury through fish and seafood consumption. Sci. Total Environ. 156:3 (1994), 269–273.
Seco, J., Xavier, J.C., Brierley, A.S., Bustamante, P., Coelho, J.P., Gregory, S., Tarling, G.A., Mercury levels in Southern Ocean squid: variability over the last decade. Chemosphere, 239, 2020, 124785.
Shalini, R., Jeyasekaran, G., Shakila, R.J., Arisekar, U., Sundhar, S., Jawahar, P., HemaMalini, A., Concentrations of trace elements in the organs of commercially exploited crustaceans and cephalopods caught in the waters of Thoothukudi, South India. Mar. Pollut. Bull., 154, 2020, 111045.
Smale, M.J., Cephalopods as prey. IV. Fishes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351:1343 (1996), 1067–1081.
Storelli, M.M., Marcotrigiano, G.O., Cadmium and total mercury in some cephalopods from the South Adriatic Sea (Italy). Food Addit. Contam. 16:6 (1999), 261–265.
Storelli, M.M., Giacominelli-Stuffler, R., Storelli, A., Marcotrigiano, G.O., Cadmium and mercury in cephalopod molluscs: estimated weekly intake. Food Addit. Contam. 23:1 (2006), 25–30.
Sun, Ruoyu, Jingjing Yuan, Jeroen E. Sonke, Yanxu Zhang, Tong Zhang, Wang Zheng, Shun Chen et al. “Methylmercury produced in upper oceans accumulates in deep Mariana Trench fauna.” Nature Communications 11, no. 1 (2020): 1–9.
Tada, Y., Marumoto, K., Takeuchi, A., Nitrospina-like bacteria are potential mercury methylators in the mesopelagic zone in the East China Sea. Front. Microbiol., 11, 2020, 1369.
UN Environment, Global Mercury Assessment 2018. 2019, UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland.
UNEP, Global Mercury Assessment 2013: Sources, Emissions. 2013, Releases and Environmental Transport, UNEP Chemicals Branch, Geneva, Switzerland.
Watanabe, H., Kubodera, T., Ichii, T., Kawahara, S., Feeding habits of neon flying squid Ommastrephes bartramii in the transitional region of the central North Pacific. Mar. Ecol. Prog. Ser. 266 (2004), 173–184.
Watanabe, N., Tayama, M., Inouye, M., Yasutake, A., Distribution and chemical form of mercury in commercial fish tissues. J. Toxicol. Sci. 37:4 (2012), 853–861.
Weber, J.H., Review of possible paths for abiotic methylation of mercury (II) in the aquatic environment. Chemosphere 26:11 (1993), 2063–2077.
Wiener, J.G., Krabbenhoft, D.P., Heinz, G.H., Scheuhammer, A.M., Ecotoxicology of mercury. Handbook of Ecotoxicology, 2, 2003, 409–463.
Wolfe, M.F., Schwarzbach, S., Sulaiman, R.A., Effects of mercury on wildlife: a comprehensive review. Environ. Toxicol. Chem. 17:2 (1998), 146–160.
World Health Organization. (2008). Safety Evaluation of Certain Food Additives and Contaminants (Vol. 68). World Health Organization.
World Health Organization, Mercury and health. Retrieved July 25, 2020, from https://www.who.int/news-room/fact-sheets/detail/mercury-and-health, 2017, March 31.