[en] Benzothiazole is a privileged scaffold in medicinal chemistry present in diverse bioactive compounds with multiple pharmacological applications such as analgesic, anticonvulsant, antidiabetic, anti-inflammatory, anticancer and radioactive amyloidal imagining agents. We reported in this work the study of sixteen functionalized 2-aryl and 2-pyridinylbenzothiazoles as antimicrobial agents and as aryl hydrocarbon receptor (AhR) modulators. The antimicrobial activity against Gram-positive (S. aureus and M. luteus) and Gram-negative (P. aeruginosa, S. enterica and E. coli) pathogens yielded MIC ranging from 3.13 to 50 μg/mL and against the yeast C. albicans, the benzothiazoles displayed MIC from 12.5 to 100 μg/mL. All compounds showed promising antibiofilm activity against S. aureus and P. aeruginosa. The arylbenzothiazole 12 displayed the greatest biofilm eradication in S. aureus (74%) subsequently verified by fluorescence microscopy. The ability of benzothiazoles to modulate AhR expression was evaluated in a cell-based reporter gene assay. Six benzothiazoles (7, 8-10, 12, 13) induced a significant AhR-mediated transcription and interestingly compound 12 was also the strongest AhR-agonist identified. Structure-activity relationships are suggested herein for the AhR-agonism and antibiofilm activities. Furthermore, in silico predictions revealed a good ADMET profile and druglikeness for the arylbenzothiazole 12 as well as binding similarities to AhR compared with the endogenous agonist FICZ.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Goya-Jorge, Elizabeth ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) > Gestion de la qualité dans la chaîne alimentaire
Abdmouleh, Fatma; Conservatoire National des Arts et Métiers (Cnam) > Equipe de Chimie Moléculaire du Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (EA 7528),
Carpio, Laureano E; ProtoQSAR SL
Giner, Rosa M; University of Valencia > Department of Pharmacology > Professor
Veitía, Maité Sylla-Iyarreta; Conservatoire National des Arts et Métiers (Cnam) > Equipe de Chimie Moléculaire du Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (EA 7528) > Professor
Language :
English
Title :
Discovery of 2-aryl and 2-pyridinylbenzothiazoles endowed with antimicrobial and aryl hydrocarbon receptor agonistic activities
H2020 - 722634 - PROTECTED - PROTECTion against Endocrine Disruptors; Detection, mixtures, health effects, risk assessment and communication.
Name of the research project :
protected - PROTECTion against Endocrine Disruptors; Detection, mixtures, health effects, risk assessment and communication
Funders :
EC - European Commission EU - European Union
Funding number :
722634
Funding text :
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 722634.
Ali, R., Siddiqui, N., Biological aspects of emerging benzothiazoles: A short review. J. Chem, 2013 2013 https://doi.org/10.1155/2013/345198.
Bessede, A., Gargaro, M., Pallotta, M.T., Matino, D., Servillo, G., Brunacci, C., Bicciato, S., Mazza, E.M.C., Macchiarulo, A., Vacca, C., Iannitti, R., Tissi, L., Volpi, C., Belladonna, M.L., Orabona, C., Bianchi, R., Lanz, T.V., Platten, M., Della Fazia, M.A., Piobbico, D., Zelante, T., Funakoshi, H., Nakamura, T., Gilot, D., Denison, M.S., Guillemin, G.J., Duhadaway, J.B., Prendergast, G.C., Metz, R., Geffard, M., Boon, L., Pirro, M., Iorio, A., Veyret, B., Romani, L., Grohmann, U., Fallarino, F., Puccetti, P., Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511 (2014), 184–190 https://doi.org/10.1038/nature13323.
Bondock, S., Fadaly, W., Metwally, M.A., Synthesis and antimicrobial activity of some new thiazole, thiophene and pyrazole derivatives containing benzothiazole moiety. Eur. J. Med. Chem. 45 (2010), 3692–3701 https://doi.org/10.1016/j.ejmech.2010.05.018.
Bort, G., Sylla-Iyarreta Veitía, M., Ferroud, C, Straightforward synthesis of PET tracer precursors used for the early diagnosis of Alzheimers disease through Suzuki-Miyaura cross-coupling reactions. Tetrahedron 69 (2013), 7345–7353 https://doi.org/10.1016/j.tet.2013.06.085.
Choudhary, S., Jeyabalan, G., Kalra, N., A Review: Therapeutic and Biological Activity of Benzothiazole Derivatives. Int. J. Recent Adv. Sci. Technol. 4 (2017), 8–20 https://doi.org/10.30750/ijrast.432.
Esser, C., Rannug, A., The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol. Rev. 67 (2015), 259–279 https://doi.org/10.1124/pr.114.009001.
Esser, C., Rannug, A., Stockinger, B., The aryl hydrocarbon receptor in immunity. Trends Immunol 30 (2009), 447–454 https://doi.org/10.1016/j.it.2009.06.005.
Ghosh, J., Lawless, M.S., Waldman, M., Gombar, V., Fraczkiewicz, R., Modeling ADMET. Benfenati, E., (eds.) Silico Methods for Predicting Drug Toxicity, 2016, Springer, New York, New York, NY, 63–83 https://doi.org/10.1007/978-1-4939-3609-0_4.
Gill, R.K., Rawal, R.K., Bariwal, J., Recent advances in the chemistry and biology of benzothiazoles. Arch. Pharm. (Weinheim). 348 (2015), 155–178 https://doi.org/10.1002/ardp.201400340.
Goya-Jorge, E., Giner, R.M., Veitía, M.S.-I., Gozalbes, R., Barigye, S.J., Predictive modeling of aryl hydrocarbon receptor (AhR) agonism. Chemosphere, 256, 2020, 127068 https://doi.org/10.1016/j.chemosphere.2020.127068.
Goya-Jorge, E., Rampal, C., Loones, N., Barigye, S.J., Carpio, L.E., Gozalbes, R., Ferroud, C., Veitía, M.S.-I., Giner, R.M., Targeting the Aryl Hydrocarbon Receptor with a novel set of Triarylmethanes. Eur. J. Med. Chem., 2020 Submitted for publication.
Hergesheimer, R., Lanznaster, D., Vourc'h, P., Andres, C., Bakkouche, S., Beltran, S., Blasco, H., Corcia, P., Couratier, P., Advances in pharmacotherapy for the treatment of gout. Expert Opin. Pharmacother. 6566 (2015), 1–8 https://doi.org/10.1517/14656566.2015.997213.
Hu, W., Sorrentino, C., Denison, M.S., Kolaja, K., Fielden, M.R., Induction of Cyp1a1 is a nonspecific biomarker of aryl hydrocarbon receptor activation: Results of large scale screening of pharmaceuticals and toxicants in vivo and in vitro. Mol. Pharmacol. 71 (2007), 1475–1486 https://doi.org/10.1124/mol.106.032748.
Janeway, C., Travers, P., Walport, M., Manipulating the immune response to fight infection, in: Immunobiology: The Immune System in Health and Disease. 2001, Garland Science, New York.
Kamal, A., Syed, M.A.H., Mohammed, S.M., Therapeutic potential of benzothiazoles: A patent review (2010-2014). Expert Opin. Ther. Pat. 25 (2015), 335–349 https://doi.org/10.1517/13543776.2014.999764.
Keam, S.J., Croom, K.F., Keating, G.M., Levofloxacin. A review of its use in the treatment of bacterial infections in the United States. Drugs 63 (2005), 2769–2802 https://doi.org/10.2165/00003495-200565050-00007.
Krieger, E., Vriend, G., YASARA View - molecular graphics for all devices - from smartphones to workstations. Bioinformatics 30 (2014), 2981–2982 https://doi.org/10.1093/bioinformatics/btu426.
Mathis, C.A., Wang, Y., Holt, D.P., Huang, G.F., Debnath, M.L., Klunk, W.E., Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J. Med. Chem. 46 (2003), 2740–2754 https://doi.org/10.1021/jm030026b.
Mohammadi-Bardbori, A., Omidi, M., Arabnezhad, M.R., Impact of CH223191-Induced Mitochondrial Dysfunction on Its Aryl Hydrocarbon Receptor Agonistic and Antagonistic Activities. Chem. Res. Toxicol. 32 (2019), 691–697 https://doi.org/10.1021/acs.chemrestox.8b00371.
Mosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65 (1983), 55–63 https://doi.org/10.1016/0022-1759(83)90303-4.
Moura-Alves, P., Faé, K., Houthuys, E., Dorhoi, A., Kreuchwig, A., Furkert, J., Barison, N., Diehl, A., Munder, A., Constant, P., Skrahina, T., Guhlich-Bornhof, U., Klemm, M., Koehler, A.B., Bandermann, S., Goosmann, C., Mollenkopf, H.J., Hurwitz, R., Brinkmann, V., Fillatreau, S., Daffe, M., Tümmler, B., Kolbe, M., Oschkinat, H., Krause, G., Kaufmann, S.H.E., AhR sensing of bacterial pigments regulates antibacterial defence. Nature 512 (2014), 387–392 https://doi.org/10.1038/nature13684.
Moyer, J.H., Ford, R.V, Laboratory and clinical observations on ethoxzolamide (Cardrase) as a diuretic agent. Am. J. Cardiol. 1 (1958), 497–504 https://doi.org/10.1016/0002-9149(58)90121-8.
Muthusubramanian, L., Rao, V.S.S., Mitra, R.B., Efficient synthesis of 2-(thiocyanomethylthio)benzothiazole. J. Clean. Prod. 9 (2001), 65–67 https://doi.org/10.1016/S0959-6526(00)00031-7.
Oh, S., Go, G.W., Mylonakis, E., Kim, Y., The bacterial signalling molecule indole attenuates the virulence of the fungal pathogen Candida albicans. J. Appl. Microbiol. 113 (2012), 622–628 https://doi.org/10.1111/j.1365-2672.2012.05372.x.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25 (2004), 1605–1612 https://doi.org/10.1002/jcc.20084.
Shereen, M.A., Khan, S., Kazmi, A., Bashir, N., Siddique, R., COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 24 (2020), 91–98 https://doi.org/10.1016/j.jare.2020.03.005.
Sommer, F., Bäckhed, F., The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. 11 (2013), 227–238 https://doi.org/10.1038/nrmicro2974.
Trott, O., Olson, A., Software News and Update. AutoDock Vina Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem 31 (2009), 455–461 https://doi.org/10.1002/jcc.21334.
Varma, M.V., Steyn, S.J., Allerton, C., El-Kattan, A.F., Predicting Clearance Mechanism in Drug Discovery: Extended Clearance Classification System (ECCS). Pharm. Res. 32 (2015), 3785–3802 https://doi.org/10.1007/s11095-015-1749-4.