Wright, M., Hughes, M., Calomino, A., Barnhardt, M., An overview of technology investments in the NASA entry systems modeling project. 53rd AIAA Aerospace Sciences Meeting, no. AIAA 2015-1892, 2015 Kissimmee, FL.
Lachaud, J., Magin, T., Cozmuta, I., Mansour, N., A short review of ablative material response models and simulation tools. 7th European Aerothermodynamics Symposium, 2011, Brugge.
Duffa, G., Ablative Thermal Protection Systems Modeling. 2013, American Institute of Aeronautics and Astronautics, Inc., Reston,Virginia.
Bartlett, E.P., Kendall, R.M., Moyer, C.B., Rindal, R.A., An Analysis of the Coupled Chemically Reacting Boundary Layer and Charring Ablator, Part 1 Summary Report, Contractor Report CR-1060., June 1968, NASA.
Lachaud, J., Cozmuta, I., Mansour, N.N., Multiscale approach to ablation modeling of phenolic impregnated carbon ablators. J. Spacecraft Rockets 47:6 (2010), 910–921, 10.2514/1.42681.
Chen, Y.-K., Milos, F., Gökcen, T., Validation of a three-dimensional ablation and thermal response code. 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 2010 no. AIAA 2010-4645, Chigaco, IL.
Lachaud, J., Mansour, N., Porous-material analysis toolbox based on OpenFoam and applications. J. Thermophys. Heat Tran. 28:2 (2014), 191–202, 10.2514/1.T4262.
Dec, J., Braun, R., Laub, B., Ablative thermal response analysis using the finite element method. J. Thermophys. Heat Tran. 26:2 (2012), 201–212, 10.2514/1.T3694.
Weng, H., Martin, A., Multidimensional modeling of pyrolysis gas transport inside charring ablative materials. J. Thermophys. Heat Tran. 28:4 (2014), 583–597, 10.2514/1.T4434.
Milos, F., Rasky, D.J., Review of numerical procedures for computational surface thermochemistry. J. Thermophys. Heat Tran. 8:1 (1994), 24–34, 10.2514/3.497.
Chen, Y., Milos, F., Navier-Stokes solutions with finite rate ablation for planetary mission earth reentries. J. Spacecraft Rockets 42:6 (2005), 961–970, 10.2514/1.12248.
Bianchi, D., Nasuti, F., Martelli, E., Navier-Stokes simulations of hypersonic flows with coupled graphite ablation. J. Spacecraft Rockets 47:4 (2010), 554–562, 10.2514/1.47995.
Bianchi, D., Nasuti, F., Martelli, E., Thermochemical erosion analysis for graphite/carbon-carbon rocket nozzles. J. Propul. Power 27:1 (2011), 197–205, 10.2514/1.47754.
Thakre, P., Yang, V., Chemical erosion of carbon-carbon/graphite nozzles in solid-propellant rocket motors. J. Propul. Power 24:4 (2008), 822–833, 10.2514/1.34946.
Turchi, A., Bianchi, D., Nasuti, F., Onofri, M., A numerical approach for the study of the gas-surface interaction in carbon-phenolic solid rocket nozzles. Aero. Sci. Technol. 27 (2013), 25–31, 10.1016/j.ast.2012.06.003.
Bianchi, D., Turchi, A., Nasuti, M., F, Onofri, Chemical erosion of carbon-phenolic rocket nozzles with finite-rate surface chemistry. J. Propul. Power 29:5 (2013), 1220–1230, 10.2514/1.B34791.
Bianchi, D., Turchi, A., Nasuti, F., Onofri, M., Coupled CFD analysis of thermochemical erosion and unsteady heat conduction in solid rocket nozzles. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2012 no. AIAA 2012–4318, Atlanta, GA.
Chen, Y.-K., Gökçen, T., Implicit coupling approach for simulation of charring carbon ablators. J. Spacecraft Rockets 51:3 (2014), 779–788, 10.2514/1.A32753.
Schrooyen, P., Hillewaert, K., Magin, T., Chatelain, P., Fully implicit discontinuous Galerkin solver to study surface and volume ablation competition in atmospheric entry flows. Int. J. Heat Mass Tran. 103 (2016), 108–124, 10.1016/j.ijheatmasstransfer.2016.07.022.
Munafò A., Multi-scale Models and Computational Methods for Aerothermodynamics. Ph.D. thesis, 2014, Ecole Centrale Paris.
Turchi, A., Helber, B., Munafò A., Magin, T.E., Development and testing of an ablation model based on plasma wind tunnel experiments. 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 2014 AIAA 2014-2123, Atlanta, GA.
Schrooyen, P., Hillewaert, K., Magin, T.E., Chatelain, P., Discontinuous Galerkin discretization coupled with sharp interface method for ablative materials. 21st AIAA Computational Fluid Dynamics Conference, 2013 no. AIAA 2013-2457, San Diego, CA.
Schrooyen, P., Numerical Simulation of Aerothermal Flows through Ablative Thermal Protection Systems. Ph.D. thesis, 2015, Universite catholique de Louvain.
A. Munafò T. Magin, Modeling of stagnation-line nonequilibrium flows by means of quantum based collisional models, Phys. Fluids 26 (9). doi:10.1063/1.4894842.
Klomfass, A., Muller, S., Calculation of stagnation streamline quantities in hypersonic blunt body flows. Shock Waves 7:1 (1997), 13–23, 10.1007/s001930050057.
Scoggins, J., Magin, T., Gibbs function continuation for linearly constrained multiphase equilibria. Combust. Flame 162 (2015), 4514–4522, 10.1016/j.combustflame.2015.08.027.
McBride, B.J., Gordon, S., Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications: I. Analysis. October 1994, National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio 44135-3191, NASA Reference Publication, RP-1311.
Park, C., Jaffe, R.L., Partridge, H., Chemical-kinetic parameters of hyperbolic earth entry. J. Thermophys. Heat Tran. 15:1 (2001), 76–90, 10.2514/2.6582.
Chen, Y.K., Milos, F.S., Navier-Stokes solutions with finite rate ablation for planetary mission earth reentries. J. Spacecraft Rockets 42:6 (2005), 961–970, 10.2514/1.12248.
D. Olynick, Y. K. Chen, M. E. Tauber, Aerothermodynamics of the stardust sample return capsule, J. Spacecraft Rockets 36 (3). doi:10.2514/2.3466.
Candler, G.V., MacCormack, R.W., Computation of weakly ionized hypersonic flows in thermochemical nonequilibrium. J. Thermophys. Heat Tran. 5:3 (1991), 266–273, 10.2514/3.260.
Reed, W., Hill, T., Triangular Mesh Methods for the Neutron Transport Equation, Contractor Report LA-UR-73-479., June 1973, Los Alamos Scientific Laboratory.
Cockburn, B., Karniadakis, G., Shu, C.-W., The development of discontinuous Galerkin methods. Cockburn, B., Karniadakis, G.E., Shu, C.-W., (eds.) Discontinuous Galerkin Methods, 2000, Springer, 3–50.
Bhatia, A., Roy, S., Pyrolysis gas flow in thermally ablating media using time-implicit discontinuous Galerkin methods. 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2011 no. AIAA 2011-145, Orlando, FL.
Bhatia, A., Application of Parallel Time-implicit Discontinuous Galerkin Finite Element Methods to Hypersonic Nonequilibrium Flow Problems. Ph.D. thesis, 2014, University of Florida.
Bhathia, A., Roy, S., Gosse, R., Effect of dielectric barrier discharge plasma actuators on non-equilibrium hypersonic flows. J. Appl. Phys. 116:16 (2014), 1–11, 10.1063/1.4898862.
Goldstein, H., Kinetics of Nylon and Phenolic Pyrolysis, Contractor Report., October 1965, Lockheed Missiles and Space Company.
Brogan, J., A Numerical Method of Solution for Heat Conduction in Composite Slabs with a Receding Surface. Technical Report LMSD 288204, April 1960, Lockheed Aircraft Corp.
Moyer, C.B., Rindal, R.A., An Analysis of the Coupled Chemically Reacting Boundary Layer and Charring Ablator. Part 2 - Finite Difference Solution for the In-depth Response of Charring Materials Considering Surface Chemical and Energy Balances, Contractor Report CR-1061., June 1968, NASA.
Lachaud, J., Martin, A., Cozmuta, I., Laub, B., Ablation workshop test case. 4th Ablation Workshop, Albuquerque, New Mexico, 2011.
Lachaud, J., Martin, A., Van Eekelen, T., Cozmuta, I., Ablation test-case series # 2. 5th Ablation Workshop, Lexington, Kentucky, 2012.
Palmer, G., Barnhardt, M., Kirk, B., Amar, A., Chen, Y.-K., Mansour, N., Coupled CFD-ablation response model simulations using the libMesh framework. 11th AIAA/ASME Joint Thermophysics and Heat Transfer, 2014 no. AIAA 2014-2123, Atlanta, GA.
Conti, R., MacCormack, R.W., Groener, L., Fryer, J., Practical Navier-Stokes computation of axisymmetric reentry flow fields with coupled ablation and shape change. 30th Aerospace Sciences Meeting and Exhibit, 1992 no. AIAA 1992-0752, Reno, NV.
Martin, A., Boyd, I.D., Strongly coupled computation of material response and nonequilibrium flow for hypersonic ablation. J. Spacecraft Rockets 52:1 (2015), 89–104, 10.2514/1.A32847.
Kuntz, D., Hassan, B., Potter, D., Prediction of ablating hypersonic vehicles using an iterative coupled fluid/thermal approach. J. Thermophys. Heat Tran. 15:2 (2001), 129–139, 10.2514/2.6594.
Chen, Y.-K., Gökçen, T., Effect of non-equilibrium surface thermochemistry in simulation of carbon based ablators. J. Spacecraft Rockets 50:5 (2013), 917–926, 10.2514/1.A32451.
Alkandry, H., Boyd, I.D., Martin, A., Coupled flow field simulations of charring ablators with nonequilibrium surface chemistry. 44th AIAA Thermophysics Conference, 2013 no. AIAA 2013-2634, San Diego, CA.
Helber, B., Turchi, A., Chazot, O., Magin, T.E., Hubin, A., Gas/surface interaction study of low-density ablators in sub-and supersonic plasmas. 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 2014 no. AIAA 2014-2122, Atlanta, GA.
Bottin, B., Chazot, O., Carbonaro, M., van der Haegen, V., Paris, S., The VKI Plasmatron Characteristics and Performance, Contractor Report RTO EN-8., June 1999, Los Alamos Scientific Laboratory.
Helber, B., Turchi, A., Scoggins, J.B., Hubin, A., Magin, T.E., Experimental investigation of ablation and pyrolysis processes of carbon-phenolic ablators in atmospheric entry plasmas. Int. J. Heat Mass Tran. 100 (2016), 810–824, 10.1016/j.ijheatmasstransfer.2016.04.072.
Helber, B., Material Response Characterization of Low-density Ablators in Atmospheric Entry Plasmas. Ph.D. thesis, 2016, Vrije Universiteit Brussel, von Karman Institute for Fluid Dynamics.
Barbante, P., Chazot, O., Flight extrapolation of plasma wind tunnel stagnation region flowfield. J. Thermophys. Heat Tran. 20:3 (2006), 493–499, 10.2514/1.17185.
Wang, F., Cheng, L., Mei, H., Zhang, Q., Zhang, L., Effect of surface microstructures on the infrared emissivity of graphite. Int. J. Thermophys. 35 (2014), 62–75, 10.1007/s10765-013-1533-9.
Vignoles, G.L., Turchi, A., Bianchi, D., Blaineau, P., Lamboley, X., Huy, D.L.Q., Levet, C., Caty, O., Chazot, O., Ablative and catalytic behavior of carbon-based porous thermal protection materials in nitrogen plasmas. Carbon 134 (2018), 376–390, 10.1016/j.carbon.2018.03.087.
Murray, V.J., Marshall, B.C., Woodburn, P.J., Minton, T.K., Inelastic and reactive scattering dynamics of hyperthermal o and o2 on hot vitreous carbon surfaces. J. Phys. Chem. C 119:26 (2015), 14780–14796, 10.1021/acs.jpcc.5b00924.
Driver, David, Olson, Michael, Barnhardt, Michael, MacLean, Matthew, Understanding high recession rates of carbon ablators seen in shear tests in an arc jet. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010 no. AIAA 2010–1177, Orlando, LA.
Turchi, A., Congedo, P.M., Magin, T.E., Thermochemical ablation modeling forward uncertainty analysis—Part I: numerical methods and effect of model parameters. Int. J. Therm. Sci. 118 (2017), 497–509, 10.1016/j.ijthermalsci.2017.04.004.
Turchi, A., Congedo, P.M., Helber, B., Magin, T.E., Thermochemical ablation modeling forward uncertainty analysis—Part II: application to plasma wind-tunnel testing. Int. J. Therm. Sci. 118 (2017), 510–517, 10.1016/j.ijthermalsci.2017.04.005.
Willey, R.J., Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation. J. Thermophys. Heat Tran. 7:1 (1993), 55–62, 10.2514/3.11569.
Jumper, E.J., Seward, W.A., Model for oxygen recombination on reaction-cured glass. J. Thermophys. Heat Tran. 8:3 (1994), 460–465, 10.2514/3.565.
Nasuti, F., Barbato, M., Bruno, C., Material-dependent catalytic recombination modeling for hypersonic flows. J. Thermophys. Heat Tran. 10:1 (1996), 131–136, 10.2514/3.763.
M. Balat-Pichelin, Interaction of Reactive Gas Flows and Ceramics at High Temperature - Experimental Methods for the Measurement of Species Recombination during Planetary Entry, Educational Notes RTO-en-avt-142, in Experiment, Modeling and Simulation of Gas-surface Interactions for Reactive Flows in Hypersonic Flights.