Aged; Body Mass Index; Brain/diagnostic imaging/metabolism/physiopathology; Connectome; Correlation of Data; Female; Functional Neuroimaging/methods; Humans; Male; Obesity/diagnosis/metabolism; Positron-Emission Tomography/methods; Risk Factors; Sex Factors; PET; brain; connectivity; gender
Abstract :
[en] There are reported gender differences in brain connectivity associated with obesity. In the elderlies, the neural endophenotypes of obesity are yet to be elucidated. We aim at exploring the brain metabolic and connectivity correlates to different BMI levels in elderly individuals, taking into account gender as variable of interest.We evaluated the association between BMI, brain metabolism and connectivity, in elderly females and males, by retrospectively collecting a large cohort of healthy elderly subjects (N=222; age=74.03±5.88 [61.2-85.9] years; M/F=115/107; BMI=27.00±4.02 [19.21-38.79] kg/m(2)). Subjects underwent positron emission tomography with [18F]FDG. We found that, in females, high BMI was associated with increased brain metabolism in the orbitofrontal cortex (R=0.44; p<0.001). A significant BMI-by-gender interaction was present (F=7.024, p=0.009). We also revealed an altered connectivity seeding from these orbitofrontal regions, namely expressing as a decreased connectivity in crucial control/decision making circuits, and as an abnormally elevated connectivity in reward circuits, only in females. Our findings support a link between high BMI and altered brain metabolism and neural connectivity, only in elderly females. These findings indicate a strong gender effect of high BMI and obesity that brings to considerations for medical practice and health policy.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of obesity among adults and youth: United States, 2011-2014. NCHS Data Brief. 2015; 219:1-8. PMID:26633046
Lovejoy JC, Sainsbury A, and Stock Conference 2008 Working Group. Sex differences in obesity and the regulation of energy homeostasis. Obes Rev. 2009; 10:154-67. https://doi.org/10.1111/j.1467-789X.2008.00529.x PMID:19021872
Forster JL, Jeffery RW. Gender differences related to weight history, eating patterns, efficacy expectations, self-esteem, and weight loss among participants in a weight reduction program. Addict Behav. 1986; 11:141-47. https://doi.org/10.1016/0306-4603(86)90039-0 PMID:3739799
Westenhoefer J. Age and gender dependent profile of food choice. Forum Nutr. 2005; 57:44-51. https://doi.org/10.1159/000083753 PMID:15702587
Queiroz de Medeiros AC, Pedrosa LF, Yamamoto ME. Food cravings among Brazilian population. Appetite. 2017; 108:212-18. https://doi.org/10.1016/j.appet.2016.10.009 PMID:27721012
Cornier MA, Shott ME, Thomas EA, Bechtell JL, Bessesen DH, Tregellas JR, Frank GK. The effects of energy balance, obesity-proneness and sex on the neuronal response to sweet taste. Behav Brain Res. 2015; 278:446-52. https://doi.org/10.1016/j.bbr.2014.10.024 PMID:25447301
Fuente-Martin E, Garcia-Caceres C, Morselli E, Clegg DJ, Chowen JA, Finan B, Brinton RD, Tschöp MH. Estrogen, astrocytes and the neuroendocrine control of metabolism. Rev Endocr Metab Disord. 2013; 14:331-38. https://doi.org/10.1007/s11154-013-9263-7 PMID:24009071
Mueller K, Anwander A, Möller HE, Horstmann A, Lepsien J, Busse F, Mohammadi S, Schroeter ML, Stumvoll M, Villringer A, Pleger B. Sex-dependent influences of obesity on cerebral white matter investigated by diffusion-tensor imaging. PLoS One. 2011; 6:e18544. https://doi.org/10.1371/journal.pone.0018544 PMID:21494606
Chao AM, Loughead J, Bakizada ZM, Hopkins CM, Geliebter A, Gur RC, Wadden TA. Sex/gender differences in neural correlates of food stimuli: a systematic review of functional neuroimaging studies. Obes Rev. 2017; 18:687-99. https://doi.org/10.1111/obr.12527 PMID:28371180
Wang GJ, Volkow ND, Telang F, Jayne M, Ma J, Rao M, Zhu W, Wong CT, Pappas NR, Geliebter A, Fowler JS. Exposure to appetitive food stimuli markedly activates the human brain. Neuroimage. 2004; 21:1790-97. https://doi.org/10.1016/j.neuroimage.2003.11.026 PMID:15050599
Wang GJ, Volkow ND, Telang F, Jayne M, Ma Y, Pradhan K, Zhu W, Wong CT, Thanos PK, Geliebter A, Biegon A, Fowler JS. Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation. Proc Natl Acad Sci USA. 2009; 106:1249-54. https://doi.org/10.1073/pnas.0807423106 PMID:19164587
Pak K, Kim SJ, Kim IJ. Obesity and Brain Positron Emission Tomography. Nucl Med Mol Imaging. 2018; 52:16-23. https://doi.org/10.1007/s13139-017-0483-8 PMID:29391908
Volkow ND, Wang GJ, Telang F, Fowler JS, Goldstein RZ, Alia-Klein N, Logan J, Wong C, Thanos PK, Ma Y, Pradhan K. Inverse association between BMI and prefrontal metabolic activity in healthy adults. Obesity (Silver Spring). 2009; 17:60-65. https://doi.org/10.1038/oby.2008.469 PMID:18948965
Wang GJ, Volkow ND, Felder C, Fowler JS, Levy AV, Pappas NR, Wong CT, Zhu W, Netusil N. Enhanced resting activity of the oral somatosensory cortex in obese subjects. Neuroreport. 2002; 13:1151-55. https://doi.org/10.1097/00001756-200207020-00016 PMID:12151759
Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. 2011; 15:37-46. https://doi.org/10.1016/j.tics.2010.11.001 PMID:21109477
Malpetti M, Sala A, Vanoli EG, Gianolli L, Luzi L, Perani D. Unfavourable gender effect of high body mass index on brain metabolism and connectivity. Sci Rep. 2018; 8:12584. https://doi.org/10.1038/s41598-018-30883-y PMID:30135519
Cohen JI, Yates KF, Duong M, Convit A. Obesity, orbitofrontal structure and function are associated with food choice: a cross-sectional study. BMJ Open. 2011; 1:e000175. https://doi.org/10.1136/bmjopen-2011-000175 PMID:22021878
Gluck ME, Viswanath P, Stinson EJ. Obesity, Appetite, and the Prefrontal Cortex. Curr Obes Rep. 2017; 6:380-88. https://doi.org/10.1007/s13679-017-0289-0 PMID:29071480
Knoch D, Gianotti LR, Pascual-Leone A, Treyer V, Regard M, Hohmann M, Brugger P. Disruption of right prefrontal cortex by low-frequency repetitive transcranial magnetic stimulation induces risk-taking behavior. J Neurosci. 2006; 26:6469-72. https://doi.org/10.1523/JNEUROSCI.0804-06.2006 PMID:16775134
Tranel D, Bechara A, Denburg NL. Asymmetric functional roles of right and left ventromedial prefrontal cortices in social conduct, decision-making, and emotional processing. Cortex. 2002; 38:589-612. https://doi.org/10.1016/S0010-9452(08)70024-8 PMID:12465670
Alonso-Alonso M, Pascual-Leone A. The right brain hypothesis for obesity. JAMA. 2007; 297:1819-22. https://doi.org/10.1001/jama.297.16.1819 PMID:17456824
Soutschek A, Kang P, Ruff CC, Hare TA, Tobler PN. Brain stimulation over the frontopolar cortex enhances motivation to exert effort for reward. Biol Psychiatry. 2018; 84:38-45. https://doi.org/10.1016/j.biopsych.2017.11.007 PMID:29275840
Berthoud HR, Münzberg H, Morrison CD. Blaming the brain for obesity: integration of hedonic and homeostatic mechanisms. Gastroenterology. 2017; 152:1728-38. https://doi.org/10.1053/j.gastro.2016.12.050 PMID:28192106
Marqués-Iturria I, Scholtens LH, Garolera M, Pueyo R, García-García I, González-Tartiere P, Segura B, Junqué C, Sender-Palacios MJ, Vernet-Vernet M, Sánchez-Garre C, de Reus MA, Jurado MA, van den Heuvel MP. Affected connectivity organization of the reward system structure in obesity. Neuroimage. 2015; 111:100-06. https://doi.org/10.1016/j.neuroimage.2015.02.012 PMID:25687594
García-García I, Jurado Má, Garolera M, Segura B, Sala-Llonch R, Marqués-Iturria I, Pueyo R, Sender-Palacios MJ, Vernet-Vernet M, Narberhaus A, Ariza M, Junqué C. Alterations of the salience network in obesity: a resting-state fMRI study. Hum Brain Mapp. 2013; 34:2786-97. https://doi.org/10.1002/hbm.22104 PMID:22522963
García-García I, Jurado Má, Garolera M, Marqués-Iturria I, Horstmann A, Segura B, Pueyo R, Sender-Palacios MJ, Vernet-Vernet M, Villringer A, Junqué C, Margulies DS, Neumann J. Functional network centrality in obesity: A resting-state and task fMRI study. Psychiatry Res. 2015; 233:331-38. https://doi.org/10.1016/j.pscychresns.2015.05.017 PMID:26145769
Tregellas JR, Wylie KP, Rojas DC, Tanabe J, Martin J, Kronberg E, Cordes D, Cornier MA. Altered default network activity in obesity. Obesity (Silver Spring). 2011; 19:2316-21. https://doi.org/10.1038/oby.2011.119 PMID:21633398
Kullmann S, Heni M, Veit R, Ketterer C, Schick F, Häring HU, Fritsche A, Preissl H. The obese brain: association of body mass index and insulin sensitivity with resting state network functional connectivity. Hum Brain Mapp. 2012; 33:1052-61. https://doi.org/10.1002/hbm.21268 PMID:21520345
Hogenkamp PS, Zhou W, Dahlberg LS, Stark J, Larsen AL, Olivo G, Wiemerslage L, Larsson EM, Sundbom M, Benedict C, Schiöth HB. Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake. Int J Obes. 2016; 40:1687-92. https://doi.org/10.1038/ijo.2016.105 PMID:27349694
Coveleskie K, Gupta A, Kilpatrick LA, Mayer ED, Ashe-McNalley C, Stains J, Labus JS, Mayer EA. Altered functional connectivity within the central reward network in overweight and obese women. Nutr Diabetes. 2015; 5:e148. https://doi.org/10.1038/nutd.2014.45 PMID:25599560
Lips MA, Wijngaarden MA, van der Grond J, van Buchem MA, de Groot GH, Rombouts SA, Pijl H, Veer IM. Resting-state functional connectivity of brain regions involved in cognitive control, motivation, and reward is enhanced in obese females. Am J Clin Nutr. 2014; 100:524-31. https://doi.org/10.3945/ajcn.113.080671 PMID:24965310
Green T, Saggar M, Ishak A, Hong DS, Reiss AL. X-Chromosome effects on attention networks: insights from imaging resting-state networks in Turner syndrome. Cereb Cortex. 2018; 28:3176-83. https://doi.org/10.1093/cercor/bhx188 PMID:28981595
Savic I, Frisen L, Manzouri A, Nordenstrom A, Lindén Hirschberg A. Role of testosterone and Y chromosome genes for the masculinization of the human brain. Hum Brain Mapp. 2017; 38:1801-14. https://doi.org/10.1002/hbm.23483 PMID:28070912
Ottowitz WE, Derro D, Dougherty DD, Lindquist MA, Fischman AJ, Hall JE. FDG-PET analysis of amygdalar-cortical network covariance during pre-versus post-menopausal estrogen levels: potential relevance to resting state networks, mood, and cognition. Neuro Endocrinol Lett. 2008; 29:467-74. PMID:18766152
Girard R, Météreau E, Thomas J, Pugeat M, Qu C, Dreher JC. Hormone therapy at early post-menopause increases cognitive control-related prefrontal activity. Sci Rep. 2017; 7:44917. https://doi.org/10.1038/srep44917 PMID:28322310
Dreher JC, Schmidt PJ, Kohn P, Furman D, Rubinow D, Berman KF. Menstrual cycle phase modulates reward-related neural function in women. Proc Natl Acad Sci USA. 2007; 104:2465-70. https://doi.org/10.1073/pnas.0605569104 PMID:17267613
Chen W, Balland E, Cowley MA. Hypothalamic Insulin Resistance in Obesity: Effects on Glucose Homeostasis. Neuroendocrinology. 2017; 104:364-81. https://doi.org/10.1159/000455865 PMID:28122381
Varela L, Horvath TL. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep. 2012; 13:1079-86. https://doi.org/10.1038/embor.2012.174 PMID:23146889
Fjell AM, Sneve MH, Grydeland H, Storsve AB, Walhovd KB. The disconnected brain and executive function decline in aging. Cereb Cortex. 2017; 27:2303-17. https://doi.org/10.1093/cercor/bhw082 PMID:27073220
Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, Darcourt J, Kapucu OL, Tatsch K, Bartenstein P, Van Laere K, and European Association of Nuclear Medicine Neuroimaging Committee. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009; 36:2103-10. https://doi.org/10.1007/s00259-009-1264-0 PMID:19838705
Della Rosa PA, Cerami C, Gallivanone F, Prestia A, Caroli A, Castiglioni I, Gilardi MC, Frisoni G, Friston K, Ashburner J, Perani D, and EADC-PET Consortium. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics. 2014; 12:575-93. https://doi.org/10.1007/s12021-014-9235-4 PMID:24952892
Shott ME, Cornier MA, Mittal VA, Pryor TL, Orr JM, Brown MS, Frank GK. Orbitofrontal cortex volume and brain reward response in obesity. Int J Obes. 2015; 39:214-21. https://doi.org/10.1038/ijo.2014.121 PMID:25027223
Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel LE, Alonso-Alonso M, Audette M, Malbert CH, Stice E. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 2015; 8:1-31. https://doi.org/10.1016/j.nicl.2015.03.016 PMID:26110109
Bennett CM, Wolford GL, Miller MB. The principled control of false positives in neuroimaging. Soc Cogn Affect Neurosci. 2009; 4:417-22. https://doi.org/10.1093/scan/nsp053 PMID:20042432
Perani D, Della Rosa PA, Cerami C, Gallivanone F, Fallanca F, Vanoli EG, Panzacchi A, Nobili F, Pappatà S, Marcone A, Garibotto V, Castiglioni I, Magnani G, et al, and EADC-PET Consortium. Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting. Neuroimage Clin. 2014; 6:445-54. https://doi.org/10.1016/j.nicl.2014.10.009 PMID:25389519
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002; 15:273-89. https://doi.org/10.1006/nimg.2001.0978 PMID:11771995
Sallet J, Mars RB, Noonan MP, Neubert FX, Jbabdi S, O'Reilly JX, Filippini N, Thomas AG, Rushworth MF. The organization of dorsal frontal cortex in humans and macaques. J Neurosci. 2013; 33:12255-74. https://doi.org/10.1523/JNEUROSCI.5108-12.2013 PMID:23884933
Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage. 2005; 25:1325-35. https://doi.org/10.1016/j.neuroimage.2004.12.034 PMID:15850749
Tziortzi AC, Searle GE, Tzimopoulou S, Salinas C, Beaver JD, Jenkinson M, Laruelle M, Rabiner EA, Gunn RN. Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy. Neuroimage. 2011; 54:264-77. https://doi.org/10.1016/j.neuroimage.2010.06.044 PMID:20600980
Lee DS, Kang H, Kim H, Park H, Oh JS, Lee JS, Lee MC. Metabolic connectivity by interregional correlation analysis using statistical parametric mapping (SPM) and FDG brain PET; methodological development and patterns of metabolic connectivity in adults. Eur J Nucl Med Mol Imaging. 2008; 35:1681-91. https://doi.org/10.1007/s00259-008-0808-z PMID:18491089
Horwitz B, Duara R, Rapoport SI. Intercorrelations of glucose metabolic rates between brain regions: application to healthy males in a state of reduced sensory input. J Cereb Blood Flow Metab. 1984; 4:484-99. https://doi.org/10.1038/jcbfm.1984.73 PMID:6501442
Xia M, Wang J, He Y. BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS One. 2013; 8:e68910. https://doi.org/10.1371/journal.pone.0068910 PMID:23861951
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.