Vesicular acetylcholine transporter knock down-mice are more susceptible to inflammation, c-Fos expression and sickness behavior induced by lipopolysaccharide.
[en] In addition to the well-known functions as a neurotransmitter, acetylcholine (ACh) can modulate of the immune system. Nonetheless, how endogenous ACh release inflammatory responses is still not clear. To address this question, we took advantage of an animal model with a decreased ACh release due a reduction (knockdown) in vesicular acetylcholine transporter (VAChT) expression (VAChT-KD(HOM)). These animals were challenged with lipopolysaccharide (LPS). Afterwards, we evaluated sickness behavior and quantified systemic and cerebral inflammation as well as neuronal activation in the dorsal vagal complex (DVC). VAChT-KD(HOM) mice that were injected with LPS (10mg/kg) showed increased mortality rate as compared to control mice. In line with this result, a low dose of LPS (0.1mg/kg) increased the levels of pro-inflammatory (TNF-α, IL-1β, and IL-6) and anti-inflammatory (IL-10) cytokines in the spleen and brain of VAChT-KD(HOM) mice in comparison with controls. Similarly, serum levels of TNF-α and IL-6 were increased in VAChT-KD(HOM) mice. This excessive cytokine production was completely prevented by administration of a nicotinic receptor agonist (0.4mg/kg) prior to the LPS injection. Three hours after the LPS injection, c-Fos expression increased in the DVC region of VAChT-KD(HOM) mice compared to controls. In addition, VAChT-KD(HOM) mice showed behavioral changes such as lowered locomotor and exploratory activity and reduced social interaction after the LPS challenge, when compared to control mice. Taken together, our results show that the decreased ability to release ACh exacerbates systemic and cerebral inflammation and promotes neural activation and behavioral changes induced by LPS. In conclusion, our findings support the notion that activity of cholinergic pathways, which can be modulated by VAChT expression, controls inflammatory and neural responses to LPS challenge.
Disciplines :
Life sciences: Multidisciplinary, general & others
Vesicular acetylcholine transporter knock down-mice are more susceptible to inflammation, c-Fos expression and sickness behavior induced by lipopolysaccharide.
Amaral, F., Fagundes, C., Miranda, A., Costa, V., Resende, L., Gloria, D.S.D., Prado, V., Teixeira, M., Maximo, P.M., Teixeira, A., Endogenous acetylcholine controls the severity of polymicrobial sepsis associated inflammatory response in mice. Curr. Neurovasc. Res. 13 (2015), 4–9.
Araque, A., Martı́n, E.D., Perea, G., Arellano, J.I., Buño, W., Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J. Neurosci. 22 (2002), 2443–2450.
Benarroch, E.E., Circumventricular organs receptive and homeostatic functions and clinical implications. Neurology 77 (2011), 1198–1204.
Bluthé, R.-M., Walter, V., Parnet, P., Layé, S., Lestage, J., Verrier, D., Poole, S., Stenning, B.E., Kelley, K.W., Dantzer, R., Lipopolysaccharide induces sickness behaviour in rats by a vagal mediated mechanism. C. R. Acad. Sci. III 317 (1994), 499–503.
Bluthé, R.-M., Michaud, B., Poli, V., Dantzer, R., Role of IL-6 in cytokine-induced sickness behavior: a study with IL-6 deficient mice. Physiol. Behav. 70 (2000), 367–373.
Brandtzaeg, P., Osnes, L., Ovstebø, R., Joø, G., Westvik, A.-B., Kierulf, P., Net inflammatory capacity of human septic shock plasma evaluated by a monocyte-based target cell assay: identification of interleukin-10 as a major functional deactivator of human monocytes. J. Exp. Med. 184 (1996), 51–60.
Cavaillon, J.-M., Annane, D., Invited review: compartmentalization of the inflammatory response in sepsis and SIRS. J. Endotoxin Res. 12 (2006), 151–170.
Chernyavsky, A.I., Arredondo, J., Skok, M., Grando, S.A., Auto/paracrine control of inflammatory cytokines by acetylcholine in macrophage-like U937 cells through nicotinic receptors. Int. Immunopharmacol. 10 (2010), 308–315.
Chinnaiyan, A.M., Huber-Lang, M., Kumar-Sinha, C., Barrette, T.R., Shankar-Sinha, S., Sarma, V.J., Padgaonkar, V.A., Ward, P.A., Molecular signatures of sepsis: multiorgan gene expression profiles of systemic inflammation. Am. J. Pathol. 159 (2001), 1199–1209.
Cloëz-Tayarani, I., Changeux, J.-P., Nicotine and serotonin in immune regulation and inflammatory processes: a perspective. J. Leukoc. Biol. 81 (2007), 599–606.
Collange, O., Charles, A.-L., Lavaux, T., Noll, E., Bouitbir, J., Zoll, J., Chakfé, N., Mertes, M., Geny, B., Compartmentalization of inflammatory response following gut ischemia reperfusion. Eur. J. Vasc. Endovasc. Surg. 49 (2015), 60–65.
Dantzer, R., Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur. J. Pharmacol. 500 (2004), 399–411.
Dantzer, R., Kelley, K.W., Twenty years of research on cytokine-induced sickness behavior. Brain Behav. Immun. 21 (2007), 153–160.
de Castro, B.M., De Jaeger, X., Martins-Silva, C., Lima, R.D., Amaral, E., Menezes, C., Lima, P., Neves, C.M., Pires, R.G., Gould, T.W., The vesicular acetylcholine transporter is required for neuromuscular development and function. Mol. Cell. Biol. 29 (2009), 5238–5250.
Doǧan, M.D., Ataoǧlu, H., Akarsu, E.S., Characterization of the hypothermic component of LPS-induced dual thermoregulatory response in rats. Pharmacol. Biochem. Behav. 72 (2002), 143–150.
Dragunow, M., Faull, R., The use of c-fos as a metabolic marker in neuronal pathway tracing. J. Neurosci. Methods 29 (1989), 261–265.
Duvernoy, H.M., Risold, P.-Y., The circumventricular organs: an atlas of comparative anatomy and vascularization. Brain Res. Rev. 56 (2007), 119–147.
Elmquist, J.K., Scammell, T.E., Jacobson, C.D., Saper, C.B., Distribution of fos-like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration. J. Comp. Neurol. 371 (1996), 85–103.
Fitting, C., Dhawan, S., Cavaillon, J.-M., Compartmentalization of tolerance to endotoxin. J. Infect. Dis. 189 (2004), 1295–1303.
Fujii, T., Takada-Takatori, Y., Horiguchi, K., Kawashima, K., Mediatophore regulates acetylcholine release from T cells. J. Neuroimmunol. 244 (2012), 16–22.
Goehler, L.E., Gaykema, R., Hammack, S.E., Maier, S.F., Watkins, L.R., Interleukin-1 induces c-Fos immunoreactivity in primary afferent neurons of the vagus nerve. Brain Res. 804 (1998), 306–310.
Goldbach, J.-M., Roth, J., Zeisberger, E., Fever suppression by subdiaphragmatic vagotomy in guinea pigs depends on the route of pyrogen administration. Am. J. Physiol. Regul. Integr. Comp. Physiol., 41, 1997, R675.
Grütz, G., New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J. Leukoc. Biol. 77 (2005), 3–15.
Harden, L., Kent, S., Pittman, Q., Roth, J., Fever and sickness behavior: friend or foe?. Brain Behav. Immun., 2015.
Henry, C.J., Huang, Y., Wynne, A., Hanke, M., Himler, J., Bailey, M.T., Sheridan, J.F., Godbout, J.P., Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J. Neuroinflammation 5 (2008), 2094–2095.
Huston, J.M., Ochani, M., Rosas-Ballina, M., Liao, H., Ochani, K., Pavlov, V.A., Gallowitsch-Puerta, M., Ashok, M., Czura, C.J., Foxwell, B., Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J. Exp. Med. 203 (2006), 1623–1628.
Huston, J.M., Gallowitsch-Puerta, M., Ochani, M., Ochani, K., Yuan, R., Rosas-Ballina, M., Ashok, M., Goldstein, R.S., Chavan, S., Pavlov, V.A., Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis∗. Crit. Care Med. 35 (2007), 2762–2768.
Jeremias, I., Victorino, V., Barbeiro, H., Kubo, S., Prado, C., Lima, T., Soriano, F., The role of acetylcholine in the inflammatory response in animals surviving sepsis induced by cecal ligation and puncture. Mol. Neurobiol., 2015, 1–9.
Kawashima, K., Fujii, T., The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sci. 74 (2003), 675–696.
Kawashima, K., Fujii, T., Moriwaki, Y., Misawa, H., Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sci. 91 (2012), 1027–1032.
Konsman, J., Kelley, K., Dantzer, R., Temporal and spatial relationships between lipopolysaccharide-induced expression of fos, interleukin-1 β and inducible nitric oxide synthase in rat brain. Neuroscience 89 (1999), 535–548.
Konsman, J.P., Luheshi, G.N., Bluthé, R.M., Dantzer, R., The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals; a functional anatomical analysis. Eur. J. Neurosci. 12 (2000), 4434–4446.
Konsman, J., Veeneman, J., Combe, C., Poole, S., Luheshi, G., Dantzer, R., Central nervous action of interleukin-1 mediates activation of limbic structures and behavioural depression in response to peripheral administration of bacterial lipopolysaccharide. Eur. J. Neurosci. 28 (2008), 2499–2510.
Laye, S., Bluthe, M., Kent, S., Combe, C., Medina, C., Parnet, P., Kelley, K., Dantzer, R., Subdiaphragmatic vagotomy blocks the induction of IL-1 (3 mRNA in mice brain in response to peripheral LPS. Am. J. Physiol. 268 (1994), R1327–R1331.
Lima, R.D.F., Prado, V.F., Prado, M.A., Kushmerick, C., Quantal release of acetylcholine in mice with reduced levels of the vesicular acetylcholine transporter. J. Neurochem. 113 (2010), 943–951.
Marvel, F.A., Chen, C.-C., Badr, N., Gaykema, R., Goehler, L.E., Reversible inactivation of the dorsal vagal complex blocks lipopolysaccharide-induced social withdrawal and c-Fos expression in central autonomic nuclei. Brain Behav. Immun. 18 (2004), 123–134.
Marvel, F.A., Chen, C.-C., Badr, N., Gaykema, R.P., Goehler, L.E., Reversible inactivation of the dorsal vagal complex blocks lipopolysaccharide-induced social withdrawal and c-Fos expression in central autonomic nuclei. Brain Behav. Immun. 18 (2004), 123–134.
McCusker, R.H., Kelley, K.W., Immune–neural connections: how the immune system's response to infectious agents influences behavior. J. Exp. Biol. 216 (2013), 84–98.
Nizri, E., Irony-Tur-Sinai, M., Lory, O., Orr-Urtreger, A., Lavi, E., Brenner, T., Activation of the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via suppression of Th1 and Th17 responses. J. Immunol. 183 (2009), 6681–6688.
Parrish, W.R., Rosas-Ballina, M., Gallowitsch-Puerta, M., Ochani, M., Ochani, K., Yang, L.-H., Hudson, L., Lin, X., Patel, N., Johnson, S.M., Modulation of TNF release by choline requires α7 subunit nicotinic acetylcholine receptor-mediated signaling. Mol. Med., 14, 2008, 567.
Pavlov, V.A., Ochani, M., Gallowitsch-Puerta, M., Ochani, K., Huston, J.M., Czura, C.J., Al-Abed, Y., Tracey, K.J., Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc. Natl. Acad. Sci. U.S.A. 103 (2006), 5219–5223.
Pavlov, V.A., Parrish, W.R., Rosas-Ballina, M., Ochani, M., Puerta, M., Ochani, K., Chavan, S., Al-Abed, Y., Tracey, K.J., Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav. Immun. 23 (2009), 41–45.
Paxinos, G., Franklin, K., The Mouse Brain Atlas in Stereotaxic Coordinates. 2001, Academic, San Diego, CA.
Pinheiro, N.M., Miranda, C.J., Perini, A., Camara, N.O., Costa, S.K., Alonso-Vale, M.I., Caperuto, L.C., Tiberio, I.F., Prado, M.A., Martins, M.A., Prado, V.F., Prado, C.M., Pulmonary inflammation is regulated by the levels of the vesicular acetylcholine transporter. PLoS ONE, 10, 2015, e0120441.
Pittman, D.Q.J., A neuro-endocrine-immune symphony. J. Neuroendocrinol. 23 (2011), 1296–1297.
Prado, V.F., Martins-Silva, C., de Castro, B.M., Lima, R.F., Barros, D.M., Amaral, E., Ramsey, A.J., Sotnikova, T.D., Ramirez, M.R., Kim, H.-G., Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in object and social recognition. Neuron 51 (2006), 601–612.
Rodrigues, H.A., Fonseca, M.D.C., Camargo, W.L., Lima, P.M., Martinelli, P.M., Naves, L.A., Prado, V.F., Prado, M.A., Guatimosim, C., Reduced expression of the vesicular acetylcholine transporter and neurotransmitter content affects synaptic vesicle distribution and shape in mouse neuromuscular junction. PLoS ONE, 8, 2013, e78342.
Rogers, R.C., McTIGUE, D.M., Hermann, G.E., Vagovagal reflex control of digestion: afferent modulation by neural and “endoneurocrine” factors. Am. J. Physiol. Gastrointest. Liver Physiol. 268 (1995), G1–G10.
Rosas-Ballina, M., Tracey, K.J., The neurology of the immune system: neural reflexes regulate immunity. Neuron 64 (2009), 28–32.
Rosas-Ballina, M., Ochani, M., Parrish, W.R., Ochani, K., Harris, Y.T., Huston, J.M., Chavan, S., Tracey, K.J., Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 11008–11013.
Rosas-Ballina, M., Olofsson, P.S., Ochani, M., Valdés-Ferrer, S.I., Levine, Y.A., Reardon, C., Tusche, M.W., Pavlov, V.A., Andersson, U., Chavan, S., Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334 (2011), 98–101.
Roy, A., Fields, W.C., Rocha-Resende, C., Resende, R.R., Guatimosim, S., Prado, V.F., Gros, R., Prado, M.A., Cardiomyocyte-secreted acetylcholine is required for maintenance of homeostasis in the heart. FASEB J. 27 (2013), 5072–5082.
Saraiva, M., O'Garra, A., The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10 (2010), 170–181.
Shytle, R.D., Mori, T., Townsend, K., Vendrame, M., Sun, N., Zeng, J., Ehrhart, J., Silver, A.A., Sanberg, P.R., Tan, J., Cholinergic modulation of microglial activation by α7 nicotinic receptors. J. Neurochem. 89 (2004), 337–343.
Steinman, L., Elaborate interactions between the immune and nervous systems. Nat. Immunol. 5 (2004), 575–581.
Suzuki, T., Hide, I., Matsubara, A., Hama, C., Harada, K., Miyano, K., Andrä, M., Matsubayashi, H., Sakai, N., Kohsaka, S., Microglial α7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. J. Neurosci. Res. 83 (2006), 1461–1470.
Teeling, J., Felton, L., Deacon, R., Cunningham, C., Rawlins, J., Perry, V., Sub-pyrogenic systemic inflammation impacts on brain and behavior, independent of cytokines. Brain Behav. Immun. 21 (2007), 836–850.
Tracey, K.J., The inflammatory reflex. Nature 420 (2002), 853–859.
Wang, H., Yu, M., Ochani, M., Amella, C.A., Tanovic, M., Susarla, S., Li, J.H., Wang, H., Yang, H., Ulloa, L., Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421 (2002), 384–388.
Wang, H., Yu, M., Ochani, M., Amella, C.A., Tanovic, M., Susarla, S., Li, J.H., Wang, H., Yang, H., Ulloa, L., Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421 (2003), 384–388.
Wang, H., Liao, H., Ochani, M., Justiniani, M., Lin, X., Yang, L., Al-Abed, Y., Wang, H., Metz, C., Miller, E.J., Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat. Med. 10 (2004), 1216–1221.
Wei, P., Liu, Q., Li, D., Zheng, Q., Zhou, J., Li, J., Acute nicotine treatment attenuates lipopolysaccharide-induced cognitive dysfunction by increasing BDNF expression and inhibiting neuroinflammation in the rat hippocampus. Neurosci. Lett. 604 (2015), 161–166.
Zhou, H., Andonegui, G., Wong, C.H., Kubes, P., Role of endothelial TLR4 for neutrophil recruitment into central nervous system microvessels in systemic inflammation. J. Immunol. 183 (2009), 5244–5250.