Influence of serum inflammatory cytokines on cytochrome P450 drug metabolising activity during breast cancer chemotherapy: a patient feasibility study.
Influence of serum inflammatory cytokines on cytochrome P450 drug metabolising activity during breast cancer chemotherapy_ a patient feasibility study.pdf
Inflammatory cytokines; CYP450; Breast cancer chemotherapy metabolism
Abstract :
[en] Individual response to chemotherapy in patients with breast cancer is variable. Obesity and exercise are associated with better and worse outcomes, respectively, and it is known that both impact the systemic cytokine milieu. Cytochrome P450 (CYP) enzymes are responsible for the metabolism of many chemotherapy agents, and CYP enzyme activity has been shown to be modified by inflammatory cytokines in vitro and in vivo. Cytokine-associated changes in CYP metabolism may alter chemotherapy exposure, potentially affecting treatment response and patient survival. Therefore, better understanding of these biological relationships is required. This exploratory single arm open label trial investigated changes in in vivo CYP activity in twelve women treated for stage II or III breast cancer, and demonstrated for the first time the feasibility and safety of utilising the Inje phenotyping cocktail to measure CYP activity in cancer patients receiving chemotherapy. Relative CYP activity varied between participants, particularly for CYP2C9 and CYP2D6, and changes in serum concentrations of the inflammatory cytokine monocyte chemoattractant protein 1 inversely correlated to CYP3A4 activity during chemotherapy. Future use of phenotyping cocktails in a clinical oncology setting may help guide drug dosing and improve chemotherapy outcomes.
Disciplines :
Oncology
Author, co-author :
Crake, Rebekah ; Université de Liège - ULiège > GIGA Cancer - Metastases Research Laboratory
Strother, Matthew
Phillips, Elisabeth
Doogue, Matthew
Zhang, Mei
Frampton, Chris
Robinson, Bridget
Currie, Margaret
Language :
English
Title :
Influence of serum inflammatory cytokines on cytochrome P450 drug metabolising activity during breast cancer chemotherapy: a patient feasibility study.
Harmsen, S., Meijerman, I. & Beijnen, J. The role of nuclear receptors in pharmacokinetic drug–drug interactions in oncology. Cancer Treat. Rev. 33, 369–380 (2007). DOI: 10.1016/j.ctrv.2007.02.003
Beijnen, J. H. & Schellens, J. H. M. Drug interactions in oncology. Lancet Oncol. 5, 489–496 (2004). DOI: 10.1016/S1470-2045(04)01528-1
Rochat, B. Role of cytochrome P450 activity in the fate of anticancer agents and in drug resistance. Clin. Pharmacokinet. 44, 349–366 (2005). DOI: 10.2165/00003088-200544040-00002
Zanger, U. M. & Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 138, 103–141 (2013). DOI: 10.1016/j.pharmthera.2012.12.007
Kirchheiner, J. et al. Pharmacogenetics of antidepressants and antipsychotics: The contribution of allelic variations to the phenotype of drug response. Mol. Psychiatry 9, 442–473 (2004). DOI: 10.1038/sj.mp.4001494
Dahl, M. L., Johansson, I., Bertilsson, L., Ingelman-Sundberg, M. & Sjöqvist, F. Ultrarapid hydroxylation of debrisoquine in a Swedish population. Analysis of the molecular genetic basis. J. Pharmacol. Exp. Ther. 274, 516–520 (1995).
Sim, S. C. et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin. Pharmacol. Ther. 79, 103–113 (2006). DOI: 10.1016/j.clpt.2005.10.002
Shah, R. & Smith, R. Addressing phenoconversion: The Achilles’ heel of personalized medicine. Br. J. Clin. Pharmacol. 79, 222–240 (2015). DOI: 10.1111/bcp.12441
Shah, R. R. & Shah, D. R. Personalized medicine: Is it a pharmacogenetic mirage?. Br. J. Clin. Pharmacol. 74, 698–721 (2012). DOI: 10.1111/j.1365-2125.2012.04328.x
Lynch, T. & Price, A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am. Fam. Physician 76, 391–396 (2007).
Aitken, A. E. & Morgan, E. T. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab. Dispos. 35, 1687–1693 (2007). DOI: 10.1124/dmd.107.015511
Dickmann, L. J., Patel, S. K., Rock, D. A., Wienkers, L. C. & Slatter, J. G. Effects of interleukin-6 (IL-6) and an anti-IL-6 monoclonal antibody on drug-metabolizing enzymes in human hepatocyte culture. Drug Metab. Dispos. 39, 1415–1422 (2011). DOI: 10.1124/dmd.111.038679
Dickmann, L., Patel, S., Wienkers, L. & Slatter, J. Effects of interleukin 1β (IL-1β) and IL-1β/interleukin 6 (IL-6) combinations on drug metabolizing enzymes in human hepatocyte culture. Curr. Drug Metab. 13, 930–937 (2012). DOI: 10.2174/138920012802138642
Nguyen, T. V. et al. Establishment of a hepatocyte-Kupffer cell coculture model for assessment of proinflammatory cytokine effects on metabolizing enzymes and drug transporters. DRUG Metab. Dispos. Drug Metab Dispos 43, 774–785 (2015). DOI: 10.1124/dmd.114.061317
Helsby, N. A. et al. CYP2C19 pharmacogenetics in advanced cancer: compromised function independent of genotype. Br. J. Cancer 99, 1251–1255 (2008). DOI: 10.1038/sj.bjc.6604699
Rost, K. L., Brockmöller, J., Esdorn, F. & Roots, I. Phenocopies of poor metabolizers of omeprazole caused by liver disease and drug treatment. J. Hepatol. 23, 268–277 (1995). DOI: 10.1016/S0168-8278(95)80005-0
O’Neil, W. M. et al. Genotype and phenotype of cytochrome P 450 2D6 in human immunodeficiency virus-positive patients and patients with acquired immunodeficiency syndrome. Eur. J. Clin. Pharmacol. 56, 231–240 (2000). DOI: 10.1007/s002280000116
Girardin, F. et al. Liver kidney microsomal type 1 antibodies reduce the CYP2D6 activity in patients with chronic hepatitis C virus infection. J. Viral Hepat. 19, 568–573 (2012). DOI: 10.1111/j.1365-2893.2011.01578.x
Williams, M. L. et al. A discordance of the cytochrome P450 2C19 genotype and phenotype in patients with advanced cancer. Br. J. Clin. Pharmacol. 49, 485–488 (2002). DOI: 10.1046/j.1365-2125.2000.00189.x
Burns, K. E., Goldthorpe, M. A., Porteus, F., Browett, P. & Helsby, N. A. CYP2C19 genotype–phenotype discordance in patients with multiple myeloma leads to an acquired loss of drug-metabolising activity. Cancer Chemother. Pharmacol. 73, 651–655 (2014). DOI: 10.1007/s00280-014-2409-9
de Graan, A.-J.M. et al. Dextromethorphan as a phenotyping test to predict endoxifen exposure in patients on tamoxifen treatment. J. Clin. Oncol. 29, 3240–3246 (2011). DOI: 10.1200/JCO.2010.32.9839
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 144, 646–674 (2011).
Roxburgh, C. S. D. & McMillan, D. C. Cancer and systemic inflammation: Treat the tumour and treat the host. Br. J. Cancer 110, 1409–1412 (2014). DOI: 10.1038/bjc.2014.90
Shinko, D., Diakos, C. I., Clarke, S. J. & Charles, K. A. Cancer-related systemic inflammation: The challenges and therapeutic opportunities for personalized medicine. Clin. Pharmacol. Ther. 102, 599–610 (2017). DOI: 10.1002/cpt.789
Rivory, L. P., Slaviero, K. A. & Clarke, S. J. Hepatic cytochrome P450 3A drug metabolism is reduced in cancer patients who have an acute-phase response. Br. J. Cancer 87, 277–280 (2002). DOI: 10.1038/sj.bjc.6600448
Maachi, M. et al. Systemic low-grade inflammation is related to both circulating and adipose tissue TNFα, leptin and IL-6 levels in obese women. Int. J. Obes. 28, 993–997 (2004). DOI: 10.1038/sj.ijo.0802718
Park, H. S., Park, J. Y. & Yu, R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-α and IL-6. Diabetes Res. Clin. Pract. 69, 29–35 (2005). DOI: 10.1016/j.diabres.2004.11.007
Caruso, C., Balistreri, C. R. & Candore, G. The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediators Inflamm. 2010, 802078 (2010).
Ellulu, M. S. et al. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 13, 851–863 (2016).
Trayhurn, P. & Wood, I. S. Adipokines: Inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr. 92, 347–355 (2004). DOI: 10.1079/BJN20041213
Fontanella, C. et al. Impact of body mass index on neoadjuvant treatment outcome: a pooled analysis of eight prospective neoadjuvant breast cancer trials. Breast Cancer Res. Treat. 150, 127–139 (2015). DOI: 10.1007/s10549-015-3287-5
Robinson, P. J., Bell, R. J. & Davis, S. R. Obesity is associated with a poorer prognosis in women with hormone receptor positive breast cancer. Maturitas 79, 279–286 (2014). DOI: 10.1016/j.maturitas.2014.07.004
Ewertz, M., Jensen, M. & Gunnarsdóttir, K. Effect of obesity on prognosis after early-stage breast cancer. J. Clin. 29, 25–31 (2011). DOI: 10.1200/JCO.2010.29.7614
Kaviani, A., Neishaboury, M., Mohammadzadeh, N., Ansari-Damavandi, M. & Jamei, K. Effects of obesity on presentation of breast cancer, lymph node metastasis and patient survival: A retrospective review. Asian Pacific J. Cancer Prev. 14, 2225–2229 (2013). DOI: 10.7314/APJCP.2013.14.4.2225
Pajares, B. et al. Obesity and survival in operable breast cancer patients treated with adjuvant anthracyclines and taxanes according to pathological subtypes: A pooled analysis. Breast Cancer Res. 15, R105 (2013). DOI: 10.1186/bcr3572
Del Fabbro, E. et al. The relationship between body composition and response to neoadjuvant chemotherapy in women with operable breast cancer. Oncologist 17, 1240–1245 (2012). DOI: 10.1634/theoncologist.2012-0169
Chen, S. et al. Obesity or overweight is associated with worse pathological response to neoadjuvant chemotherapy among Chinese women with breast cancer. PLoS ONE 7, e41380 (2012). DOI: 10.1371/journal.pone.0041380
Karpińska, A., Safranow, K., Kładny, J. & Sulżyc-Bielicka, V. The Influence of obesity on results of AT (doxorubicin plus docetaxel) neoadjuvant chemotherapy in locally advanced breast cancer patients. Polish J. Surg. 87, 231–237 (2015). DOI: 10.1515/pjs-2015-0047
Courneya, K., Segal, R., McKenzie, D. & Dong, H. Effects of exercise during adjuvant chemotherapy on breast cancer outcomes. Med Sci Sport. 46, 1744–1751 (2014).
Ballard-Barbash, R. et al. Physical activity, biomarkers, and disease outcomes in cancer survivors: a systematic review. J. Natl. Cancer Inst. 104, 815–840 (2012). DOI: 10.1093/jnci/djs207
Löf, M., Bergström, K. & Weiderpass, E. Physical activity and biomarkers in breast cancer survivors: A systematic review. Maturitas 73, 134–142 (2012). DOI: 10.1016/j.maturitas.2012.07.002
Nicolini, A., Carpi, A. & Rossi, G. Cytokines in breast cancer. Cytokine Growth Factor Rev. 10.1016/j.cytogfr.2006.07.002 (2006). DOI: 10.1016/j.cytogfr.2006.07.002
Dethlefsen, C., Højfeldt, G. & Hojman, P. The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res. Treat. 138, 657–664 (2013). DOI: 10.1007/s10549-013-2488-z
Oh, K.-S., Park, S.-J., Shinde, D. D., Shin, J.-G. & Kim, D.-H. High-sensitivity liquid chromatography–tandem mass spectrometry for the simultaneous determination of five drugs and their cytochrome P450-specific probe metabolites in human plasma. J. Chromatogr. B 895–896, 56–64 (2012). DOI: 10.1016/j.jchromb.2012.03.014
Inui, N. et al. Chronological effects of rifampicin discontinuation on cytochrome P450 activity in healthy japanese volunteers, using the cocktail method. Clin. Pharmacol. Ther. 94, 702–708 (2013). DOI: 10.1038/clpt.2013.167
Tanaka, S. et al. Simultaneous LC-MS/MS analysis of the plasma concentrations of a cocktail of 5 cytochrome P450 substrate drugs and their metabolites. Biol. Pharm. Bull 10, 79 (2014).
Williams, D. et al. Use of a cocktail probe to assess potential drug interactions with cytochrome P450 after administration of belatacept, a costimulatory immunomodulator. Br. J. Clin. Pharmacol. 83, 370–380 (2017). DOI: 10.1111/bcp.13097
Heo, J.-K. et al. Simultaneous determination of five cytochrome P450 probe substrates and their metabolites and organic anion transporting polypeptide probe substrate in human plasma using liquid chromatography-tandem mass spectrometry. Pharmaceutics 10, 79 (2018). DOI: 10.3390/pharmaceutics10030079
Shah, R. & Smith, R. Inflammation-induced phenoconversion of polymorphic drug metabolizing enzymes: Hypothesis with implications for personalized medicine. Drug Metab. Dispos. 43, 400–410 (2015). DOI: 10.1124/dmd.114.061093
Fuhr, U., Jetter, A. & Kirchheiner, J. Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the “cocktail” approach. Clin. Pharmacol. Ther. 81, 270–283 (2007). DOI: 10.1038/sj.clpt.6100050
Ryu, J., Song, I., Sunwoo, Y. & Shon, J. Development of the “inje cocktail” for high-throughput evaluation of five human cytochrome P450 isoforms in vivo. Clinical 82, 531–540 (2007).
Kacevska, M., Robertson, G. R., Clarke, S. J. & Liddle, C. Inflammation and CYP3A4-mediated drug metabolism in advanced cancer: impact and implications for chemotherapeutic drug dosing. Expert Opin. Drug Metab. Toxicol. 4, 137–149 (2008). DOI: 10.1517/17425255.4.2.137
Deshmane, S. L., Kremlev, S., Amini, S. & Sawaya, B. E. Monocyte chemoattractant protein-1 (MCP-1): AN overview. J. Interferon Cytokine Res. 29, 313–326 (2009). DOI: 10.1089/jir.2008.0027
Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006). DOI: 10.1172/JCI26498
Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003). DOI: 10.1172/JCI200319246
Bruun, J. M., Lihn, A. S., Pedersen, S. B. & Richelsen, B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): Implication of macrophages resident in the AT. J. Clin. Endocrinol. Metab. 90, 2282–2289 (2005). DOI: 10.1210/jc.2004-1696
Wyler, S. L., D’Ingillo, S. L., Lamb, C. L. & Mitchell, K. A. Monocyte chemoattractant protein-1 is not required for liver regeneration after partial hepatectomy. J. Inflamm. (United Kingdom) 13, 1–8 (2016).
Jover, R., Bort, R., Gómez-Lechón, M. J. & Castell, J. V. Down-regulation of human CYP3A4 by the inflammatory signal interleukin-6: molecular mechanism and transcription factors involved. FASEB J. 16, 1799–1801 (2002). DOI: 10.1096/fj.02-0195fje
Martínez-Jimé Nez, C. P., Gó Mez-Lechó, M. J., Castell, J. V. & Jover, R. Transcriptional regulation of the human hepatic CYP3A4: Identification of a new distal enhancer region responsive to CCAAT/enhancer-binding protein β isoforms (liver activating protein and liver inhibitory protein). Mol. Pharmacol. 67, 2088–2101 (2005). DOI: 10.1124/mol.104.008169
Castell, J. V. et al. Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett. 242, 237–239 (1989). DOI: 10.1016/0014-5793(89)80476-4
Fontana, L., Eagon, J. C., Trujillo, M. E., Scherer, P. E. & Klein, S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56, 1010–1013 (2007). DOI: 10.2337/db06-1656
Byers, T. & Sedjo, R. L. Does intentional weight loss reduce cancer risk?. Diabetes Obes. Metab. 13, 1063–1072 (2011). DOI: 10.1111/j.1463-1326.2011.01464.x
Pakiz, B., Flatt, S. W., Bardwell, W. A., Rock, C. L. & Mills, P. J. Effects of a weight loss intervention on body mass, fitness, and inflammatory biomarkers in overweight or obese breast cancer survivors. Int. J. Behav. Med. 18, 333–341 (2011). DOI: 10.1007/s12529-010-9079-8
Scott, E. et al. Effects of an exercise and hypocaloric healthy eating program on biomarkers associated with long-term prognosis after early-stage breast cancer: A randomized controlled trial. Cancer Causes Control 24, 181–191 (2013). DOI: 10.1007/s10552-012-0104-x
Dieli-Conwright, C. M. et al. Adipose tissue inflammation in breast cancer survivors: Effects of a 16-week combined aerobic and resistance exercise training intervention. Breast Cancer Res. Treat. 168, 147–157 (2017). DOI: 10.1007/s10549-017-4576-y
Seruga, B., Zhang, H., Bernstein, L. J. & Tannock, I. F. Cytokines and their relationship to the symptoms and outcome of cancer. Nat. Rev. Cancer 8, 887–899 (2008). DOI: 10.1038/nrc2507
Sparano, J. A. et al. Weekly paclitaxel in the adjuvant treatment of breast cancer. N. Engl. J. Med. 358, 1663–1671 (2008). DOI: 10.1056/NEJMoa0707056
Zhang, M., Moore, G., Doogue, M. & Strother, M. Simultaneous determination of the phenotyping cocktail drugs and their cytochrome P450-specific probe metabolites in human serum and urine by liquid chromatography/tandem mass spectrometry. In Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists Abstract 422 (2018).
United States Food and Drug Administration. Guidance for Industry In Vivo Drug Metabolism/Drug Interaction Studies-Study Design, Data Analysis, and Recommendations for Dosing and Labeling. http://www.fda.gov/cber/guidelines.htm (1999).