[en] Mangrove forests are highly productive but globally threatened coastal ecosystems,
whose role in the carbon budget of the coastal zone has long been debated. Here we
provide a comprehensive synthesis of the available data on carbon fluxes in mangrove
ecosystems. A reassessment of global mangrove primary production from the literature
results in a conservative estimate of 218 ± 72 Tg C a 1. When using the best available
estimates of various carbon sinks (organic carbon export, sediment burial, and
mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is
unaccounted for. This unaccounted carbon sink is conservatively estimated at 112 ±
85 Tg C a 1, equivalent in magnitude to 30–40% of the global riverine organic carbon
input to the coastal zone. Our analysis suggests that mineralization is severely
underestimated, and that the majority of carbon export from mangroves to adjacent waters
occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek
waters and tidal export of DIC appear to be the major sinks. These processes are
quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets,
but are not yet adequately constrained with the limited published data available so far.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Bouillon, Steven; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Alongi, D. M. (2002), Present state and future of the world's mangrove forests, Environ. Conserv, 29, 331-349.
Alongi, D. M., T. Ayukai, G. J. Brunskill, B. F. Clough, and E. Wolanski (1998), Sources, sinks, and export of organic carbon through a tropical, semi-enclosed delta (Hinchinbrook Channel, Australia), Mangroves Salt Marshes, 2, 237-242.
Alongi, D. M., A. Sasekumar, V. C. Chong, J. Pfitzner, L. A. Trott, F. Tirendi, P. Dixon, and G. J. Brunskill (2004), Sediment accumulation and organic material flux in a managed mangrove ecosystem: Estimates of land-ocean-atmosphere exchange in peninsular Malaysia, Mar. Geol., 208, 383-402.
Alongi, D. M., B. F. Clough, and A. I. Robertson (2005), Nutrient-use efficiency in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina, Aquat. Bot., 82, 121-131.
Amarasinghe, M. D., and S. Balasubramaniam (1992), Net primary productivity of two mangrove stands on the northwestern coast of Sri Lanka, Hydrobiologia, 247, 17-27.
Baran, E., and J. Harnbrey (1998), Mangrove conservation and coastal management in Southeast Asia: What impact on fishery resources?, Mar. Pollut. Bull., 37, 431-440.
Barbier, E. B. (2000), Valuing the environment as input: Review of applications to mangrove-fishery linkages, Ecol. Econ., 35, 47-61.
Borges, A. V., S. Djenidi, G. Lacroix, J. Théate, B. Delille, and M. Frankignoulle (2003), Atmospheric CO2 flux from mangrove surrounding waters, Geophys. Res. Lett., 30(11), 1558, doi:10.1029/2003GL017143.
Boto, K. G., and J. S. Bunt (1981), Tidal export of particulate organic matter from a northern Australian mangrove system, Estuarine Coastal Shelf Sci., 13, 247-255.
Boto, K. G., and J. T. Wellington (1988), Seasonal variations in concentrations and fluxes of dissolved organic and inorganic materials in a tropical, tidally-dominated, mangrove waterway, Mar. Ecol. Prog. Ser, 50, 151-160.
Bouillon, S., and H. T. S. Boschker (2006), Bacterial carbon sources in coastal sediments: A cross-system analysis based on stable isotope data of biomarkers, Biogeosciences, 3, 175-185.
Bouillon, S., M. Frankignoulle, F. Dehairs, B. Velimirov, A. Eiler, H. Etcheber, G. Abril, and A. V. Borges (2003), Inorganic and organic carbon biogeochemistry in the Gautami Godavari estuary (Andhra Pradesh, India) during pre-monsoon: The local impact of extensive mangrove forests, Global Biogeochem. Cycles, 17(4), 1114, doi:10.1029/ 2002GB002026.
Bouillon, S., F. Dehairs, L.-S. Schiettecatte, and A. V. Borges (2007a), Biogeochemistry of the Tana estuary and delta (northern Kenya), Limnol. Oceanogr., 52, 46-59.
Bouillon, S., F. Dehairs, B. Velimirov, G. Abril, and A. V. Borges (2007b), Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay, Kenya), J. Geophys. Res., 112, G02018, doi:10.1029/2006JG000325.
Bouillon, S., J. J. Middelburg, F. Dehairs, A. V. Borges, G. Abril, M. R. Flindt, S. Ulomi, and E. Kristensen (2007c), Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania), Biogeosciences, 4, 311-322.
Bouillon, S., R. Connolly, and S. Y. Lee (2008), Organic matter exchange and cycling in mangrove ecosystems: Recent insights from stable isotope studies, J. Sea Res., 59, 44-58, doi:10.1016/j.seares.2007.05.001.
Burrows, D. W. (2003), The role of insect leaf herbivory on the mangroves Avicennia marina and Rhizophora stylosa, Ph.D. thesis, 286 pp., James Cook University, Townsville, Queensland, Australia.
Chen, R., and R. R. Twilley (1999), A simulation model of organic matter and nutrient accumulation in mangrove wetlands soils, Biogeochemistry, 44, 93-118.
Chmura, G. L., S. C. Anisfeld, D. R. Cahoon, and J. C. Lynch (2003), Global carbon sequestration in tidal, saline wetland soils, Global Biogeochem. Cycles, 17(4), 1111, doi:10.1029/2002GB001917.
Christensen, B. (1978), Biomass and primary production of Rhizophora apiculata in a mangrove forest in southern Thailand, Aquat. Bot., 4, 43-52.
Clark, D. A., S. Brown, D. W. Kicklighter, J. Q. Chamber, J. R. Thomlinson, J. Ni, and E. A. Holland (2001a), Net primary production in tropical forests: An evaluation and synthesis of existing field data, Ecol. Appl., 11, 371-384.
Clark, D. A., S. Brown, D. W. Kicklighter, J. Q. Chambers, J. R. Thomlinson, and J. Ni (2001b), Measuring net primary production in forests: Concepts and field methods, Ecol. Appl., 11, 356-370.
Constanza, R., et al. (1997), The value of the world's ecosystem services and natural capital, Ecol. Econ., 25, 3-15.
Davis, S. E., D. L. Childers, J. W. Day, D. T. Rudnick, and F. H. Sklar (2001), Wetland-water column exchanges of carbon, nitrogen, and phosphorus in a southern Everglades dwarf mangrove, Estuaries, 24, 610-622.
Day, J., W. Conner, F. Ley-Lou, R. Day, and A. Machado (1987), The productivity and composition of mangrove forests, Laguna de Terminus, Mexico, Aquat. Bot., 27, 267-284.
Day, J. W., C. Coronado-Molina, F. R. Vera-Herrera, R. R. Twilley, V. H. Rivera-Monroy, H. Alvarez-Guillen, R. Day, and W. Conner (1996), A 7-year record of aboveground net primary production in a southeastern Mexican mangrove forest, Aquat. Bot., 55, 39-60.
Diele, K., V. Koch, and U. Saint-Paul (2005), Population structure and catch composition of the exploited mangrove crab Ucides cordatus in the Caeté estuary, north Brazil: Indications of overfishing?, Aquat. Living. Resour, 18, 169-178.
Dittmar, T., and R. J. Lara (2001), Do mangroves rather than rivers provide nutrients to coastal environments south of the Amazon River?: Evidence from long-term flux measurements, Mar. Ecol. Prog. Ser, 213, 67-77.
Dittmar, T., R. J. Lara, and G. Kattner (2001), River or mangrove? Tracing major organic matter sources in tropical Brazilian coastal waters, Mar. Chem., 73, 253-271.
Dittmar, T., N. Hertkom, G. Kattner, and R. J. Lara (2006), Mangroves, a major source of dissolved organic carbon to the oceans, Global Biogeochem. Cycles, 20, GB1012, doi:10.1029/2005GB002570.
Duarte, C. M., and J. Cebrián (1996), The Fate of marine autotrophic production, Limnol. Oceanogr, 41, 1758-1766.
Duarte, C. M., J. J. Middelburg, and N. Caraco (2005), Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1-8.
Duke, N. C. (2001), Gap creation and regenerative processes driving diversity and structure of mangrove ecosystems, Wetlands Ecol. Manage., 9, 257-269.
Duke, N. C. (2002), Sustained high levels of foliar herbivory of the mangrove Rhizophora stylosa by a moth larva Doratifera stenosa (Limacodidae) in north-eastern Australia, Wetlands Ecol. Manage., 10, 403-419.
Ewe, S. M. L., E. E. Gaiser, D. L. Childers, D. Iwaniec, V H. Rivera-Monroy, and R. R. Twilley (2006), Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida coastal Everglades, Hydrobiologia, 569, 459-474.
FAO (2003), State of the World's Forests, 151 pp., Food and Agric. Org. of the U.N., Rome.
Feller, I. C., K. L. McKee, D. F. Whigham, and J. P. O'Neill (2002), Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest, Biogeochemistry, 62, 145-175.
Fiala, K., and L. Hernandez (1993), Root biomass of a mangrove forest in southwestern Cuba (Majana), Ekologia Bratislava, 12, 15-30.
Field, C. D. (1995), Impact of expected climate change on mangroves, Hydrobiologia, 295, 75-81.
Gattuso, J. P., M. Frankignoulle, and R. Wollast (1998), Carbon and carbonate metabolism in coastal aquatic ecosystems, Annu. Rev. Ecol. Syst., 29, 405-434.
Gleason, S. M., and K. C. Ewel (2002), Organic matter dynamics on the forest floor of a Micronesian mangrove forest: An investigation of species composition shifts, Biotropica, 34, 190-198.
Gulley, F. B., H. T. Odum, and A. F. Wilson (1962), The structure and metabolism of a Puerto Rico mangrove forest in May, Ecology, 43, 9-19.
Gong, W. K., and J. E. Ong (1990), Plant biomass and nutrient flux in a managed mangrove forest in Malaysia, Estuarine Coastal Shelf Sci., 31, 519-530.
Heald, E. J. (1969), The production of organic detritus in a south Florida estuary, Ph.D. diss,, Univ. of Miami, Coral Gables, Fla.
Hendricks, J. J., R. L. Hendrick, C. A. Wilson, R. J. Mitchell, S. D. Pecot, and D. Guo (2006), Assessing the patterns and controls of fine root dynamics: An empirical test and methodological review, J. Ecol., 94, 40-57.
Jennerjahn, T. C., and V. Ittekkot (2002), Relevance of mangroves for the production and deposition of organic matter along tropical continental margins, Naturwissenschaften, 89, 23-30.
Koch, V, and M. Wolff (2002), Energy budget and ecological role of mangrove epibenthos in the Caeté estuary, north Brazil, Mar. Ecol. Prog. Ser., 228, 119-130.
Komiyama, A., K. Ogino, S. Aksomkoae, and S. Sabhasri (1987), Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass, J. Trop. Ecol., 3, 97-108.
Kristensen, E., and D. M. Alongi (2006), Control by fiddler crabs ( Uca vocans) and plant roots (Avicennia marina) on carbon, iron and sulfur biogeochemistry in mangrove sediment, Limnol. Oceanogr, 51, 1557-1571.
Kristensen, E., S. Bouillon, T. Dittmar, and C. Marchand (2008), Organic matter dynamics in mangrove ecosystems, Aquat. Bot., doi:10.1016/ j.aquabot.2007.12.005, in press.
Lee, S. Y. (1989), Litter production and turnover of the mangrove Kandelia candel (L.) Druce in a Hong Kong tidal shrimp pond, Estuarine Coastal Shelf Sci., 29, 75-87.
Lee, S. Y. (1990), Primary productivity and particulate organic matter flow in an estuarine mangrove-wetland in Hong Kong, Mar. Biol., 106, 453-463.
Lee, S. Y. (1991), Herbivory as an ecological process in a Kandelia candel (Rhizophoraceae) mangal in Hong Kong, J. Trap. Ecol., 7, 337-348.
Lee, S. Y. (1995), Mangrove outwelling: A review, Hydrobiologia, 295, 203-212.
Lee, S. Y. (1998), Ecological role of grapsid crabs in mangrove ecosystems: A review, Mar. Freshwater Res., 49, 335-343.
Lee, S. Y. (2006), Exchange of organic matter and nutrients between mangroves and estuaries: Myths, methodological issues and missing links, Int. J. Ecol. Environ. Sci,, 31, 163-176.
Lin, P., C. Y. Lu, G. H. Lin, R. H. Chen, and L. Su (1985), The biomass and productivity of Kandelia candel community, J. Xiamen Univ., 14, 508-514.
Lin, P., C. Y. Lu, G. L. Wang, and H. X. Chen (1990), Biomass and productivity of Bruguiera sexangula mangrove forest in Hainan Island, China, J. Xiamen Univ., 29, 209-213.
Lovelock, C. E., R. W. Ruess, and I. Feller (2006), Fine root respiration in the mangrove Rhizophora mangle over variation in forest stature and nutrient availability, Tree Physiol., 26, 1601-1606.
Lugo, A. E,, and S. C. Snedaker (1974), The ecology of mangroves, Annu. Rev. Ecol. Syst., 5, 39-64.
Machiwa, J. F. (1999), Lateral fluxes of organic carbon in a mangrove forest partly contaminated with sewage wastes, Mangroves Salt Marshes, 3, 95-104.
Mackenzie, F. T., A. Lerman, and A. J. Andersson (2004), Past and present of sediment and carbon biogeochemical cycling models, Biogeosciences, 1, 11-32.
Malhi, Y., and J. Grace (2000), Tropical forests and atmospheric carbon dioxide, Trends Ecol. Evol., 15, 332-337.
Malhi, Y., et al. (2004), The above-ground coarse wood productivity of 104 Neotropical forest plots, Global Change Biol., 10, 563-591.
Mall, L. P., V. P. Singh, and A. Garge (1991), Study of biomass, litter fall, litter decomposition and soil respiration in monogeneric mangrove and mixed mangrove forests of Andaman Islands, Trop. Ecol., 32, 144-152.
Marchand, C., E. Lallier-Vergés, and F. Baltzer (2003), The composition of sedimentary organic matter in relation to the dynamic features of a mangrove-fringed coast in French Guiana, Estuarine Coastal Shelf Sci., 56, 119-130.
McIvor, C. C., and T. J. and Smith (1995), Differences in the crab fauna of mangrove areas at a southwest Florida and a northeast Australia location: Implications for leaf litter processing, Estuaries, 18, 591-597.
McKee, K. L., and P. L. Faulkner (2000), Restoration of biogeochemical function in mangrove forests, Restoration Ecol., 8, 247-259.
McKee, K. L., D. R. Cahoon, and I. C. Feller (2007), Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation, Global Ecol. Biogeogr, 16, 545-556.
Middleton, B. A., and K. L. McKee (2001), Degradation of mangrove tissues and implications for peat formation in Belizean island forests, J. Ecol., 89, 818-828.
Mumby, P. J., et al. (2004), Mangroves enhance the biomass of coral reef fish communities in the Caribbean, Nature, 427, 533-536.
Nadelhoffer, K. N. (2000), The potential effects of nitrogen deposition on fine-root production in forest ecosystems, New Phytol., 147, 131-139.
Nordhaus, I., M. Wolff, and K. Diele (2006), Litter processing and population food intake of the mangrove crab Ucides cordatus in a high intertidal forest in northern Brazil, Estuarine Coastal Shelf Sci., 67, 239-250.
Odum, E. P. (1968), A research challenge: Evaluating the productivity of coastal and estuarine waters, in Proceedings of the 2nd Sea Grant Conference, edited by E. Keiffner, pp. 63-64, Univ. of Rhode Island, Kingston.
Odum, W. E., and E. J. Heald (1972), Trophic analysis of an estuarine mangrove community, Bull. Mar. Sci., 22, 671-738.
Ong, J. E., W. K. Gong, C. H. Wong, and G. Dhararaian (1979), Productivity of a managed mangrove forest in west Malaysia, in Proceedings of the International Conference on Trends in Applied Biology in South East Asia, edited by Y. M. Nor, pp. 274-294, Univ. Sains Malaysia, Penang.
Ovalle, A. R. C., C. E. Rezende, L. D. Lacerda, and C. A. R. Silva (1990), Factors affecting the hydrochemistry of a mangrove tidal creek, Sepetiba Bay, Brazil, Estuarine Coastal Shelf Sci., 31, 639-650.
Poret N., R. R. Twilley, V H. Rivera-Monroy, and C. Coronado-Molina (2007), Belowground decomposition of mangrove roots in Florida coastal Everglades, Estuaries Coasts, 30, 491-496.
Proffitt, C. E., and D. J. Devlin (2005), Grazing by the intertidal gastropod Melampus coffeus greatly increases mangrove litter degradation rates, Mar. Ecol. Prog. Ser., 296, 209-218.
Putz, F. E., and H. T. Chan (1986), Tree growth, dynamics and productivity in a mature mangrove forest in Malaysia, For. Ecol. Manage., 17, 211-230.
Raich, J. W., and K. J. Nadelhoffer (1989), Belowground carbon allocation in forest ecosystems: Global trends, Ecology, 70, 1346-1354.
Rivera-Monroy, V. H., L. A. Torres, N. Bahamon, F. Newmark, and R. R. Twilley (1999), The potential use of mangrove forests as nitrogen sinks of shrimp aquaculture pond effluents: The role of denitrification, J. World Aquacult. Soc., 30, 12-25.
Rivera-Monroy, V. H., R. R. Twilley, E. Medina, E. B. Moser, L. Botero, A. M. Francisco, and E. Bullard (2004), Spatial variability in soil nutrients in disturbed riverine mangrove forests at different stages of regeneration in the San Juan River estuary, Venezuala, Estuaries, 27, 44-57.
Robertson, A. I. (1986), Leaf-burying crabs: Their influence on energy flow and export from mixed mangrove forests (Rhizophorai] spp.) in northeastern Australia, J. Exp. Mar. Biol. Ecol., 102, 237-248.
Robertson, A. I, and D. M. Alongi (1995), Role of riverine mangrove forests in organic carbon export to the tropical coastal ocean: A preliminary mass balance for the Fly Delta (Papua New Guinea), Geo Mar. Lett., 15, 134-139.
Robertson, A. I., and N. C. Duke (1987), Insect herbivory on mangrove leaves in North Queensland, Austral Ecol., 12, 1-7.
Robertson, A. I., and M. J. Phillips (1995), Mangroves as filters of shrimp pond effluent: Predictions and biegeochemical research needs, Hydrobiologia, 295, 311-321.
Romigh, M. A., S. E. David, V. H. Rivera-Monroy, and R. R. Twilley (2006), Flux of organic carbon in a riverine mangrove wetland in the Florida coastal Everglades, Hydrobiologia, 569, 505-516.
Rönnbäck, P. (1999), The ecological basis for economic value of seafood production supported by mangrove ecosystems, Ecol. Econ., 29, 235-252.
Ross, M. S., P. L. Ruiz, G. J. Telesnicki, and J. F. Meeder (2001), Estimating above-ground biomass and production in mangrove communities of Biscayne National Park, Florida (U.S.A.), Wetlands Ecol. Manage., 9, 27-37.
Saenger, P., and S. C. Snedaker (1993), Pantropical trends in mangrove aboveground biomass and annual litterfall, Oecologia, 96, 293-299.
Sänchez, B. G. (2005), Belowground productivity of mangrove forests in southwest Florida, Ph.D. thesis, 181 pp., Lousiana State Univ., Baton Rouge.
Saur, E., D. Imbert, J. Etienne, and D. Mian (1999), Insect herbivory on mangrove leaves in Guadeloupe: Effects on biomass and mineral content, Hydrobiologia, 413, 89-93.
Schlünz, B., and R. R. Schneider (2000), Transport of terrestrial organic carbon to the oceans by rivers: Re-estimating flux-and burial rates, Int. J. Earth Sci., 88, 599-606.
Sell, M. G. (1977), Modelling the response of mangrove ecosystem of herbicide spraying, hurricanes, nutrient enrichment and economic development, Ph.D. diss., Univ. of Florida, Gainesville.
Sherman, R. E., T. J. Fahey, and P. Martinez (2003), Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic, Ecosystems, 6, 384.
Smith, T. J., K. G. Boto, S. D. Frusher, and R. L. Giddins (199 1), Keystone species and mangrove forest dynamics: The influence of burrowing by crabs on soil nutrient status and forest productivity, Estuarine Coastal Shelf Sci., 33, 419-432.
Sukardjo, S., and I. Yamada (1992), Biomass and productivity of a Rhizophora mucronata Lamarck plantation in Tritih, Central Java, Indonesia, For. Ecol. Manage., 49, 195-209.
Sutula, M., B. Perez, E. Reyes, D. Childers, S. Davis, J. Day, D. Rudnick, and F. Sklar (2003), Factors affecting spatial and temporal variability in material exchange between the southern Everglades wetlands and Florida Bay (USA), Estuarine Coastal Shelf Sci., 57, 757-781.
Thongtham, N., and E. Kristensen (2003), Physical and chemical characteristics of mangrove crab (Neoepisesarma versicolor) burrows in the
Bangrong mangrove forest, Phuket, Thailand; with emphasis on behavioural response to changing environmental conditions, Vie Milieu, 53, 141-151.
Thongtham, N., and E. Kristensen (2005), Carbon and nitrogen balance of leaf-eating sesarmid crabs (Neoepisesarma versicolor) offered different food sources, Estuarine Coastal Shelf Sci., 65, 213-222.
Twilley, R. R. (1995), The exchange of organic carbon in basin mangrove forests in a southwest Florida estuary, Estuarine Coastal Shelf Sci., 20, 543-557.
Twilley, R. R., A. E. Lugo, and C. Patterson-Zucca (1986), Litter production and turnover in basin mangrove forests in southwest Florida, Ecology, 67, 670-683.
Twilley, R. R., R. H. Chen, and T. Hargis (1992), Carbon sinks in mangrove forests and their implications to the carbon budget of tropical coastal ecosystems, Water Air Soil Pollut., 64, 265-288.
Twilley, R. R., M. Poro, V. H. Garcia, V H. Rivera-Monroy, R. Zambrano, and A. Bodero (1997), Litter dynamics in riverine mangrove forests in the Guayas River Estuary, Ecuador, Oecologia, 111, 109-122.
Valiela, I., J. L. Bowen, and J. K. York (2001), Mangrove forests: One of the world's threatened major tropical environments, Bioscience, 51, 807-815.
Vermaat, J. E., and U. Thampanya (2006), Mangroves mitigate tsunami damage: A further response, Estuarine Coastal Shelf Sci., 69, 1-3.
Woodroffe, C. D. (1985), Studies of a mangrove basin, Tuff Crater, New Zealand: II. Comparison of volumetric and velocity-area methods of estimating tidal flux, Estuarine Coastal Shelf Sci., 20, 431-445.
Woodroffe, C. D., K. N. Bardsley, P. J. Ward, and J. R. Hanley (1988), Production of mangrove litter in a macrotidal embayment, Darwin Harbour, N.T., Australia, Estuarine Coastal Shelf Sci., 26, 581-598.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.