Wirdefeldt K, Adami H-O, Cole P, Trichopoulos D, Mandel J. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol. 2011;26(1):1-58. doi: 10.1007/s10654-011-9581-6
Kaufmann H, Nahm K, Purohit D, Wolfe D. Autonomic failure as the initial presentation of Parkinson disease and dementia with Lewy bodies. Neurology. 2004;63(6):1093-1095. http://dx.doi.org/10.1212/01.wnl.0000138500.73671.dc
Zis P, Martinez-Martin P, Sauerbier A et al. Non-motor symptoms burden in treated and untreated early Parkinson’s disease patients: argument for non-motor subtypes. Eur J Neurol. 2015;22(8):1145-1150. doi: 10.1111/ene.12733
Pfeiffer R. Intestinal Dysfunction in Parkinson’s Disease. In: Pfeiffer R, Bodis-Wollner I, eds. Parkinson’s Disease and Nonmotor Dysfunction. Current Clinical Neurology. Humana Press; 2013;155-171. doi: 10.1007/978-1-60761-429-6_10
Goetze O, Nikodem A, Wiezcorek J et al. Predictors of gastric emptying in Parkinson’s disease. Neurogastroenterology & Motility. 2006;18(5):369-375. doi: 10.1111/j.1365-2982.2006.00780.x
Goetze O, Wieczorek J, Mueller T, Przuntek H, Schmidt WE, Woitalla D. Impaired gastric emptying of a solid test meal in patients with Parkinson’s disease using 13C-sodium octanoate breath test. Neuroscience Letters. 2005;375(3):170-173. doi: 10.1016/j.neulet.2004.11.007
Abbott RD, Petrovitch H, White LR et al. Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology. 2001;57(3):456-462. doi: 10.1212/WNL.57.3.456
Noyce AJ, Bestwick JP, Silveira-Moriyama L et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol. 2012;72(6):893-901. doi: 10.1002/ana.23687
Pavcovich LA, Yang M, Miselis RR, Valentino RJ. Novel role for the pontine micturition center, Barrington’s nucleus: evidence for coordination of colonic and forebrain activity. Brain research. 1998;784(1):355-361. doi: 10.1016/s0006-8993(97)01178-5
Valentino RJ, Miselis RR, Pavcovich LA. Pontine regulation of pelvic viscera: pharmacological target for pelvic visceral dysfunctions. Trends in pharmacological sciences. 1999;20(6):253-260. doi: 10.1016/s0165-6147(99)01332-2
Kim YS. Accumulation of Alpha-synuclein Causes Colonic Dysmotility Independently of Enteric Nervous Damage in the Early Stage of Parkinson’s Disease (Neurogastroenterol Motil 2012;24:425-436). Journal of Neurogastroenterology and Motility. 2013;19(2):264-266. doi: 10.5056/jnm.2013.19.2.264
Masuda H, Asahina M, Oide T et al. Antemortem detection of colonic α-synuclein pathology in a patient with pure autonomic failure. J Neurol. 2014;261(12):2451-2452. doi: 10.1007/s00415-014-7529-y
Forsyth CB, Shannon KM, Kordower JH et al. Increased Intestinal Permeability Correlates with Sigmoid Mucosa alpha-Synuclein Staining and Endotoxin Exposure Markers in Early Parkinson’s Disease. PLoS ONE. 2011;6(12):28032. doi: 10.1371/journal.pone.0028032
Malek N, Swallow D, Grosset KA, Anichtchik O, Spillantini M, Grosset DG. Alpha-synuclein in peripheral tissues and body fluids as a biomarker for Parkinson’s disease — a systematic review. Acta Neurologica Scandinavica 2014;130(2):59-72. doi: 10.1111/ane.12247
Beach TG, Adler CH, Sue LI et al. Multi-organ distribution of phosphorylated α-synuclein histopathology in subjects with Lewy body disorders. Acta neuropathologica. 2010;119(6):689-702. doi: 10.1007/s00401-010-0664-3
Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell and tissue research. 2004;318(1):121-134. doi: 10.1007/s00441-004-0956-9
Goldstein DS, Sewell L, Holmes C. Association of anosmia with autonomic failure in Parkinson disease. Neurology. 2010;74(3):245-251. doi: 10.1212/WNL.0b013e3181ca014c
Hill JM, Clement C, Pogue AI, Bhattacharjee S, Zhao Y, Lukiw WJ. Pathogenic microbes, the microbiome, and Alzheimer’s disease (AD). Frontiers in Aging Neuroscience. 2014;6:127. doi: 10.3389/fnagi.2014.00127
Grab DJ, Chakravorty SJ, van der Heyde H, Stins MF. How can microbial interactions with the blood — brain barrier modulate astroglial and neuronal function? Cellular Microbiology. 2011;13(10):1470-1478. doi: 10.1111/j.1462-5822.2011.01661.x
Lema Tomé CM, Tyson T, Rey NL, Grathwohl S, Britschgi M, Brundin P. Inflammation and α-Synuclein’s Prion-like Behavior in Parkinson’s Disease— Is There a Link? Molecular Neurobiology. 2012;47(2):561-574. doi: 10.1007/s12035-012-8267-8
Visanji NP, Brooks PL, Hazrati L-N, Lang AE. The prion hypothesis in Parkinson’s disease: Braak to the future. Acta Neuropathologica Communications. 2013;1:2-2. doi: 10.1186/2051-5960-1-2
Braak H, Tredici KD, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging. 24(2):197-211. doi: 10.1016/S0197-4580(02)00065-9
Dickson RP, Erb-Downward JR, Huffnagle GB. The role of the bacterial microbiome in lung disease. Expert Review of Respiratory Medicine. Informa UK Limited; 2013;7(3):245-257. doi: 10.1586/ers.13.24
Spasova DS, Surh CD. Blowing on Embers: Commensal Microbiota and Our Immune System. Frontiers in Immunology. 2014;5:318. doi: 10.3389/fimmu.2014.00318
Bittinger K, Charlson ES, Loy E et al. Improved characterization of medically relevant fungi in the human respiratory tract using nextgeneration sequencing. Genome biology. 2014;15(10):487. doi: 10.1186/s13059-014-0487-y
Montiel-Castro AJ, González-Cervantes RM, Bravo-Ruiseco G, Pacheco-López G. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Frontiers in Integrative Neuroscience. 2013;7:70. doi: 10.3389/fnint.2013.00070
Sudo N, Chida Y, Aiba Y et al. Postnatal microbial colonization programs the hypothalamic — pituitary — adrenal system for stress response in mice. The Journal of Physiology. 2004;558(1):263-275. doi: 10.1113/jphysiol.2004.063388
Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & behaviour — epigenetic regulation of the gut — brain axis. Genes, Brain and Behavior. 2014;13(1):69-86. doi: 10.1111/gbb.12109
Luna RA, Foster JA. Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression. Current opinion in biotechnology. 2015;32:35-41. doi: 10.1016/j.copbio.2014.10.007
Daulatzai M. Chronic Functional Bowel Syndrome Enhances Gut-Brain Axis Dysfunction, Neuroinflammation, Cognitive Impairment, and Vulnerability to Dementia. Neurochem Res. 2014;39(4):624-644. doi: 10.1007/s11064-014-1266-6.
Forsythe P, Bienenstock J, Kunze W. Vagal Pathways for Microbiome- Brain-Gut Axis Communication. In: Lyte M, Cryan JF, eds. Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology. Springer New York; 2014;115-133. doi: 10.1007/978-1-4939-0897-4_5
Marangell LB, Rush AJ, George MS et al. Vagus nerve stimulation (VNS) for major depressive episodes: one year outcomes. Biological Psychiatry. 2002;51(4):280-287. doi: 10.1016/S0006-3223(01)01343-9
Indrio F, Riezzo G, Raimondi F, Di Mauro A, Francavilla R. Microbiota Involvement in the Gut—Brain Axis. Journal of Pediatric Gastroenterology and Nutrition. 2013;57. doi: 10.1097/01.mpg.0000441927.20931.d6
Banks WA, Kastin AJ, Broadwell RD. Passage of Cytokines across the Blood-Brain Barrier. Neuroimmunomodulation. 1995;2(4):241-248. doi: 10.1159/000097202
Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain, behavior, and immunity. 2014;38:1-12. doi: 10.1016/j.bbi.2013.12.015
Berer K, Mues M, Koutrolos M et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479(7374):538-541. doi: 10.1038/nature10554
Berer K, Wekerle H, Krishnamoorthy G. B cells in spontaneous autoimmune diseases of the central nervous system. Molecular immunology. 2011;48(11):1332-1337. doi: 10.1016/j.molimm.2010.10.025
Ezendam J, De Klerk A, Gremmer ER, Van Loveren H. Effects of Bifidobacterium animalis administered during lactation on allergic and autoimmune responses in rodents. Clinical & Experimental Immunology. 2008;154(3):424-431. doi: 10.1111/j.1365-2249.2008.03788.x
Ochoa Repáraz J, Mielcarz DW, Begum Haque S, Kasper LH. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Annals of neurology. 2011;69(2):240-247. doi: 10.1002/ana.22344
Kishan Kumar Nyati, Roopanshi Nyati. Role of Campylobacter jejuni Infection in the Pathogenesis of Guillain-Barré Syndrome: An Update. BioMed Research International. 2013;13. doi: 10.1155/2013/852195
Kang D-W, Park JG, Ilhan ZE, Wallstrom G, LaBaer J, Adams JB et al. Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children. Gilbert JA, editor. PLoS ONE. Public Library of Science (PLoS); 2013;8(7):68322. doi: 10.1371/journal.pone.0068322
Sandler RH, Finegold SM, Bolte ER, Buchanan CP, Maxwell AP, Vaisanen M-L et al. Short-Term Benefit From Oral Vancomycin Treatment of Regressive-Onset Autism. Journal of Child Neurology SAGE Publications. 2000;15(7):429-435. doi: 10.1177/088307380001500701
Scheperjans F, Aho V, Pereira PAB et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord. 2015;30(3):350-358. doi: 10.1002/mds.26069
Keshavarzian A, Green SJ, Engen PA et al. Colonic bacterial composition in Parkinson’s disease. Movement Disorders. 2015;30(10):1351-1360. doi: 10.1002/mds.26307
Natale G, Pasquali L, Ruggieri S, Paparelli A, Fornai F. Parkinson’s disease and the gut: a well known clinical association in need of an effective cure and explanation. Neurogastroenterology & Motility. 2008;20(7):741-749. doi: 10.1111/j.1365-2982.2008.01162.x
Willemze RA, Luyer MD, Buurman WA, de Jonge WJ. Neural reflex pathways in intestinal inflammation: hypotheses to viable therapy. Nature Reviews Gastroenterology & Hepatology. 2015. doi: 10.1038/nrgastro.2015.56
Vizcarra JA, Wilson Perez HE, Espay AJ. The power in numbers: gut microbiota in Parkinson’s disease. Movement Disorders. 2015;30(3):296-298. doi: 10.1002/mds.26116
Olanow CW, Wakeman DR, Kordower JH. Peripheral alpha-synuclein and Parkinson’s disease. Movement Disorders. 2014;29(8):963-966. doi: 10.1002/mds.25966
Ulusoy A, Rusconi R, Pérez Revuelta BI et al. Caudo-rostral brain spreading of α-synuclein through vagal connections. EMBO molecular medicine. 2013;5(7):1119-1127. doi: 10.1002/emmm.201302475