[en] New observations from the North Sea, a NW European shelf sea, show that between 2001 and 2005 the CO2 partial pressure (pCO2) in surface waters rose by 22 matm, thus faster than atmospheric pCO2, which in the same period rose approximately 11 matm. The surprisingly rapid decline in air-sea partial pressure difference (DpCO2) is primarily a response to an elevated water column inventory of dissolved inorganic carbon (DIC), which, in turn, reflects mostly anthropogenic CO2 input rather than natural interannual variability. The resulting decline in the buffering capacity of the inorganic carbonate system (increasing Revelle factor) sets up a theoretically predicted feedback loop whereby the invasion of anthropogenic CO2 reduces the ocean’s ability to uptake additional CO2. Model simulations for the North Atlantic Ocean and thermodynamic principles reveal that this feedback should be stronger, at present, in colder midlatitude and subpolar waters because of the lower present-day buffer capacity and elevated DIC levels driven either by northward advected surface water and/or excess local air-sea CO2 uptake. This buffer capacity feedback mechanism helps to explain at least part of the observed trend of decreasing air-sea DpCO2 over time as reported in several other recent North Atlantic studies.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Thomas, Helmuth; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Anderson, L., and S. Kaltin (2001), Carbon fluxes in the Arctic Ocean-Potential impact by climate change, Polar Res., 20, 225-232.
Anderson, L. G., and A. Olsen (2002), Air-sea flux of anthropogenic carbon dioxide in the North Atlantic, Geophys. Res. Lett., 29(17), 1835, doi: 10. 1029/2002GLo14820.
Bates, N. R. (2001), Interannual variability of the oceanic CO2 and biogeo-chemical properties in the western Atlantic subtropical gyre, Deep Sea Res., Part II, 48, 1507-1528.
Borges, A. V, B. Delille, and M. Frankignoulle (2005), Budgeting sinks and sources Of CO2 in the coastal ocean: Diversity of ecosystems counts, Geophys. Res. Lett., 32, L14601, doi:10.1029 /2005GL023053.
Bozec, Y., H. Thomas, K. Elkalay, and H. J. W. de Baar (2005), The continental shelf pump in the North Sea-Evidence from summer observations, Mar. Chem., 83, 131-147.
Bozec, Y., H. Thomas, L.-S. Schiettecatte, A. V. Borges, K. Elkalay, and H. J. W. de Baar (2006), Assessment of the processes controlling the seasonal variations of dissolved inorganic carbon in the North Sea, Limnol. Oceanogr., 51, 2746-2762.
Corbière, A., N. Metzl, G. Reverdin, C. Brunet, and T. Takahashi (2007), Interannual and decadal variability of the oceanic carbon sink in the North Atlantic subpolargyre, Tellus, Ser. B , 59, 168-179, DOI:10.1111/ j. 1600-0889.2006.00232.x.
de Haas, H., T. C. E. van Weering, and H. de Stigter (2002), Organic carbon in shelf seast Sinks or sources, processes and products, Cont. Shelf Res., 22, 691-717.
Delille, B., et al. (2005), Response of primary production and calcification to changes pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi, Global Biogeochem. Cycles, 19, GB2023, doi: 10. 1029/ 2004GB00318.
Dilling, L., S. C. Doney, J. Edmonds, K. R. Gurney, R. Harriss, D. Schimel, B. Stephens, and G. Stokes (2003), The role of carbon cycle observations and knowledge in carbon management, Annu. Rev. Environ. Resour., 28, 521-558.
Doney, S. C., W. G. Large, and F. O. Bryan (1998a), Surface ocean fluxes and water-mass transformation rates in the coupled NCSR climate system model, J. Clim., 11, 1420-1441.
Doney, S. C., J. L. Bullister, and R. Wanninkof (1998b), Climatic variability in upper ocean ventilation rates diagnosed using chlorofluorocarbons, Geophys. Res. Lett. , 25, 1399-1402.
Doney, S. C., S. Yeager, G. Danabasoglu, W. G. Large, and J. C. McWilliams (2003), Modeling oceanic variability (1958-1997), simulation, design and model data evaluation, NCAR Tech. Rep. NCAR/ TN-452+STR, Natl. Cent. for Atmos. Res., Boulder, Colo.
Doney, S. C., et al. (2004), Evaluating global ocean carbon models: The importance of realistic physics, Global Biogeochem. Cycles, 18, GB3017, doi: 10. 1029/2003GB002150.
Doney, S. C., S. Yeager, G. Danabasoglu, W. G. Large, and J. C. McWilliams (2006), Mechanisms governing interannual variability of upper ocean temperature in a global hindcast simulation, J. Phys. Oceanogr, 37, 1918-1938.
Dore, J. E., R. Lukas, D. W. Sadler, and D. M. Karl (2003), Climate-driven changes to the atmospheric CO2 sink in the subtropical Pacific, Nature, 424, 754-757.
Feely, R. A., T. Takahashi, R. Wanninkhof, M. J. McPhaden, C. E. Cosca, S. C. Sutherland, and M. E. Carr (2006), Decadal variability of the air-sea CO2 fluxes in the equatorial Pacific Ocean, J. Geophys. Res., 111, C08S90, doi: 10. 1029/2005JC003129.
Frankignoulle, M., and A. V. Borges (2001), European continental shelf as a significant sink for atmospheric carbon dioxide, Global Biogeochem. Cycles, 15, 569-576.
Fung, L, S. C. Doney, K. Lindsay, and J. John (2005), Evolution of carbon sinks in a changing climate, Proc. Nad. Acad. Sci. U. S. A., 102, 11,201-11, 206, doi:10.1073/pnas.0504949102.
Gruber, N., C. D. Keeling, and N. R. Bates (2002), Interannual variability in the North Atlantic Ocean carbon sink, Science, 298, 2374-2378.
Inoue, H. Y, and M. Ishii (2005), Variations and trends of CO2 in the surface seawater in the Southern Ocean south of Australia between 1969 and 2002, Tellus, Ser B, 57, 58-69.
Intergovernmental Panel on Climate Change (IPCC) (2001), Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., 994 pp., Cambridge Univ. Press, New York.
Johnson, K. M., K. D. Wills, D. B. Butler, W. K. Johnson, and C. S. Wong (1993), Coulometric total carbon dioxide analysis for marine studies: Maximizing the performance of an automated gas extraction system and coulometric detector, Mar. Chem., 44, 167-187.
Körtzinger, A., H. Thomas, B. Schneider, N. Gronau, L. Mintrop, and J. C. Duinker (1996), At-sea intercomparison of two newly designed underway pCO2 systems - Encouraging results, Mar. Chem. , 52, 133-145.
Lambert, S. J. (2004), Changes in the winter cyclone frequencies and strengths in transient enhanced greenhouse warming simulations using two coupled climate models, Atmos. Ocean, 42(3), 173-181.
Lefèvre, N., A. J. Watson, A. Olsen, A. F. Rios, F. F. Pérez, and T. Johannessen (2004), A decrease in the sink for atmospheric CO2 in the North Atlantic, Geophys. Res. Lett. , 31, L07306, doi:10.1029/ 2003GL018957.
Lenhart, H. J., G. Radach, J. O. Backhaus, and T. Pohlmann (1995), Simulations of the North Sea circulation, its variability, and its implementation as hydrodynamical forcing in ERSEM, Neth. J. Sea Res. , 33, 271-299.
Le Quéré, C., J. C. Orr, P. Monfray, O. Aumont, and G. Madec (2000), Interannual variability of the oceanic sink of CO2 from 1979 through 1997, Global Biogeochem. Cycles, 14, 1247-1265.
Lewis, E., and D. W. R. Wallace (1998), Program developed for CO2 system calculations, Rep. ORNL/CDIAC-105, Carbon Dioxide Inf Anal. Cent., Oak Ridge Natl. Lab., U. S. Dep. of Energy, Oak Ridge, Tenn.
Mikaloff-Fletcher, S. E., et al. (2006), Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean, Global Biogeochem, Cycles , 20, GB2002, doi:10.1029/2005GB002530.
Moore, J. K., S. C. Doney, and K. Lindsay (2004), Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model, Global Biogeochem. Cycles, 18, GB4028, doi:10.1029/2004GB002220.
Olsen, A., et al. (2006), Magnitude and origin of the anthropogenic CO2 increase and 13C Suess effect in the Nordic seas since 1981, Global Biogeochem. Cycles, 20, GB3027, doi:10.1029/2005GB002669.
Omar, A. M., and A. Olsen (2006), Reconstructing the time history of the air-sea CO2 disequilibrium and its rate of change in the eastern subpolar North Atlantic, 1972-1989, Geophys.Res. Lett., 33,L04602, doi:10.1029/ 2005GL025425.
Orr, J. C., et al. (2005), Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437, 681-686.
Polyakov, I. V., et al. (2005), One more step toward a warmer Arctic, Geophys. Res. Lett., 32, L17605, doi:10.1029/2005GL023740.
Revelle, R., and H. E. Suess (1957), Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades, Tellus, 9, 19-27.
Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. Zeebe, and F. M. M. Morel (2000), Reduced calcification of marine plankton in response to increased atmospheric CO2, Nature, 407, 364-367.
Sabine, C. L., et al. (2004), The oceanic sink for anthropogenic CO2, Science, 305, 367-371.
Sarmiento, J. L., J. C. Orr, and U. Siegenthaler (1992), A perturbation simulation Of CO2 uptake in an ocean general circulation model, J Geophys, Res., 97, 3621-3645.
Sarmiento, J. L., C. Le Quéré, and S. W. Pacala (1995), Limiting future atmospheric carbon dioxide, Global Biogeochem. Cycles, 9, 121-137.
Schiettecatte, L.-S., H. Thomas, Y Bozec, and A. V. Borges (2007), High temporal coverage of carbon dioxide measurements in the Southern Bight of the North Sea, Mar Chem, doi:10.1016/j.marchem.2007.01.001, in press.
Swail, V. R., E. A. Ceccacci, and A. T. Cox (2000), The AES North Atlantic wave reanalysis: Validation and climate assessment, paper presented at 6th International Workshop on Wave Hindcasting and Forecasting, Monterey, Calif., 6-10 Nov. (Available at http:// www.oceanweather. com/about/papers/)
Takahashi, T., R. A. Feely, R. F. Weiss, R. H. Wanninkhof, D. W. Chipman, S. C. Sutherland, and T. T. Takahashi (1997), Global air-sea flux Of CO2: An estimate based on measurements of sea-air pCO2 difference, Proc. Natl. Acad. Sci. U. S. A., 94, 8292-8299.
Takahashi, T., et al. (2002), Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects, Deep Sea Res., Part II, 49, 1601-1622.
Takahashi, T., S. C. Sutherland, R. A. Feely, and R. Wanninkhof (2006), Decadal change of the surface water pCO2 in the North Pacific: A synthesis of 35 years of observations, J. Geophys. Res., 111, C07S05, doi:10.1029/2005JC003074.
Thomas, H. (2002), Remineralization ratios of carbon, nutrients, and oxygen in the North Atlantic Ocean: A field databased assessment, Global Biogeochem. Cycles, 16(3), 1051, doi:10.1029/200IGB001452.
Thomas, H., M. H. England, and V. Ittekkot (2001), An off-line 3D model of anthropogenic CO2 uptake by the oceans, Geophys. Res. Lett., 28, 547-550.
Thomas, H., Y Bozec, K. Elkalay, and H. J. W. de Baar (2004), Enhanced open ocean storage Of CO2 from shelf sea pumping, Science, 304, 1005-1008.
Thomas, H., Y Bozec, H. J. W. de Baar, K. Elkalay, M. Frankignoulle, L.-S. Schiettecatte, G. Katmer, and A. V. Borges (2005a), The carbon budget of the North Sea, Biogeosciences, 2, 87-96.
Thomas, H., Y Bozec, K. Elkalay, H. J. W de Baar, A. V. Borges, and L.-S. Schiettecatte (2005b), Controls of the surface water partial pressure of CO2 in the North Sea, Biogeosciences, 2, 323-334.
Tsunogai, S., S. Watanabe, and T. Sato (1999), Is there a "continental shelf pump" for the absorption of atmospheric CO2?, Tellus, Ser. B, 51, 701 - 712.
Winn, C., Y-H. Li, F. T. Mackenzie, and D. M. Karl (1998), Rising surface ocean dissolved inorganic carbon at the Hawaii Ocean Time-series site, Mar Chem. , 60, 33 -47.
Wollast, R. (1998), Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean, in The Global Coastal Ocean, edited by K. H. Brink and A. R. Robinson, pp. 213-252, John Wiley, Hoboken, N. J.
Yeager, S. G., W. G. Large, J. J. Hack, and C. A. Shields (2006), The low resolution CCSM3, J Clim., 19, 2545-2566.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.