Webster, Justine M.; Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands > Department of Respiratory Medicine > NUTRIM School of Nutrition and Translational Research in Metabolism
Kempen, Laura ; Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands > Department of Respiratory Medicine > NUTRIM School of Nutrition and Translational Research in Metabolism
Hardy, Rowan S.; University of Birmingham, Birmingham, United Kingdom > Institute of Metabolism and Systems Research
Langen, Ramon C.J.; Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands > Department of Respiratory Medicine > NUTRIM School of Nutrition and Translational Research in Metabolism
Language :
English
Title :
Inflammation and Skeletal Muscle Wasting During Cachexia
Abbass T., Dolan R. D., Laird B. J., McMillan D. C., (2019). The Relationship between Imaging-Based Body Composition Analysis and the Systemic Inflammatory Response in Patients with Cancer: A Systematic Review. Cancers 11:1304. 10.3390/cancers11091304 31487957
Abdulai R. M., Jensen T. J., Patel N. R., Polkey M. I., Jansson P., Celli B. R., et al. (2018). Deterioration of Limb Muscle Function during Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 197 433–449. 10.1164/rccm.201703-0615CI 29064260
Abel R. M., Fischer J. E., Buckley M. J., Barnett G. O., Austen W. G., (1976). Malnutrition in Cardiac Surgical Patients: Results of a Prospective. Random. Eval. Early Postoper. Parenter. Nutr. Arch. Sur. 111 45–50. 10.1001/archsurg.1976.01360190047008 812456
Ahasan M. M., Hardy R., Jones C., Kaur K., Nanus D., Juarez M., et al. (2012). Inflammatory regulation of glucocorticoid metabolism in mesenchymal stromal cells. Arthritis Rheum 64 2404–2413. 10.1002/art.34414 22294469
Ando K., Takahashi F., Motojima S., Nakashima K., Kaneko N., Hoshi K., et al. (2013). Possible role for tocilizumab, an anti-interleukin-6 receptor antibody, in treating cancer cachexia. J. Clin. Oncol. 31 e69–e72. 10.1200/JCO.2012.44.2020 23129740
Anker M. S., Holcomb R., Muscaritoli M., von Haehling S., Haverkamp W., Jatoi A., et al. (2019). Orphan disease status of cancer cachexia in the USA and in the European Union: a systematic review. J. Cachexia Sarcopenia Muscle 10 22–34. 10.1002/jcsm.12402 30920776
Anker S. D., Sharma R., (2002). The syndrome of cardiac cachexia. Int. J. Cardiol. 85 51–66. 10.1016/S0167-5273(02)00233-4
Anker S. D., Ponikowski P. P., Clark A. L., Leyva F., Rauchhaus M., Kemp M., et al. (1999). Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur. Heart J. 20 683–693. 10.1053/euhj.1998.1446 10208789
Anker S. D., Ponikowski P., Varney S., Chua T. P., Clark A. L., Webb-Peploe K. M., et al. (1997). Wasting as independent risk factor for mortality in chronic heart failure. Lancet 349 1050–1053. 10.1016/s0140-6736(96)07015-8 31907552
Arends J., Baracos V., Bertz H., Bozzetti F., Calder P. C., Deutz N. E. P., et al. (2017). ESPEN expert group recommendations for action against cancer-related malnutrition. Clin. Nutr. 36 1187–1196. 10.1016/j.clnu.2017.06.017 28689670
Argilés J. M., Busquets S., López-Soriano F. J., (2001). Metabolic interrelationships between liver and skeletal muscle in pathological states. Life Sci. 69 1345–1361. 10.1016/s0024-3205(01)01238-3
Attaix D., Ventadour S., Codran A., Béchet D., Taillandier D., Combaret L., (2005). The ubiquitin–proteasome system and skeletal muscle wasting. Essays Biochem. 41:173. 10.1042/bse0410173
Baker J. F., Sauer B. C., Cannon G. W., Teng C. C., Michaud K., Ibrahim S., et al. (2016). Changes in Body Mass Related to the Initiation of Disease-Modifying Therapies in Rheumatoid Arthritis. Arthritis Rheumatol 68 1818–1827. 10.1002/art.39647 26882094
Baltgalvis K. A., Berger F. G., Peña M. M. O., (2009). Muscle wasting and interleukin-6-induced atrogin-I expression in the cachectic Apc Min/+ mouse. Pflugers. Arch. Eur. J. Physiol. 457 989–1001. 10.1007/s00424-008-0574-6 18712412
Baltgalvis K. A., Berger F. G., Pena M. M. O., Davis J. M., Muga S. J., Carson J. A., (2008). Interleukin-6 and cachexia in ApcMin/+ mice. Am. J. Physiol. Regul. Integr. Compar. Physiol. 294 R393–R401. 10.1152/ajpregu.00716.2007 18056981
Barnes P. J., (1998). Anti-inflammatory Actions of Glucocorticoids: Molecular Mechanisms. Clin. Sci. 94 557–572. 10.1042/cs0940557 9854452
Basa N. R., Wang L., Arteaga J. R., Heber D., Livingston E. H., Taché Y., (2003). Bacterial lipopolysaccharide shifts fasted plasma ghrelin to postprandial levels in rats. Neurosci. Lett. 343 25–28. 10.1016/S0304-3940(03)00312-4
Bentzinger C. F., Wang Y. X., Rudnicki M. A., (2012). Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect. Biol. 4:a008342. 10.1101/cshperspect.a008342 22300977
Bhatnagar S., Kumar A., (2012). The TWEAK-Fn14 system: breaking the silence of cytokine-induced skeletal muscle wasting. Curr. Mol. Med. 12 3–13. 10.2174/156652412798376107 22082477
Bhatnagar S., Mittal A., Gupta S. K., Kumar A., (2012). TWEAK causes myotube atrophy through coordinated activation of ubiquitin-proteasome system, autophagy, and caspases. J. Cell. Physiol. 227 1042–1051. 10.1002/jcp.22821 21567392
Bodnar R. J., Pasternak G. W., Mann P. E., Paul D., Warren R., Donner D. B., (1989). Mediation of anorexia by human recombinant tumor necrosis factor through a peripheral action in the rat. Cancer Res. 49 6280–6284.
Bonaldo P., Sandri M., (2013). Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech. 6 25–39. 10.1242/dmm.010389 23268536
Bonetto A., Aydogdu T., Jin X., Zhang Z., Zhan R., Puzis L., et al. (2012). JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am. J. Physiol. Endocrinol. Metabol. 303 E410–E421. 10.1152/ajpendo.00039.2012 22669242
Booth F. W., Tseng B. S., FlÜCk M., Carson J. A., (1998). Molecular and cellular adaptation of muscle in response to physical training. Acta Physiol. Scandinavica 162 343–350. 10.1046/j.1365-201X.1998.0326e.x 9578380
Bosaeus I., Daneryd P., Lundholm K., (2002). Dietary Intake, Resting Energy Expenditure, Weight Loss and Survival in Cancer Patients. J. Nutr. 132 3465S–3466S. 10.1093/jn/132.11.3465S 12421871
Bosaeus I., Daneryd P., Svanberg E., Lundholm K., (2001). Dietary intake and resting energy expenditure in relation to weight loss in unselected cancer patients. Int. J. Cancer 93 380–383. 10.1002/ijc.1332 11433403
Bossola M., Muscaritoli M., Bellantone R., Pacelli F., Cascino A., Sgadari A., et al. (2000). Serum tumour necrosis factor-alpha levels in cancer patients are discontinuous and correlate with weight loss. Eur. J. Clin. Invest. 30 1107–1112. 10.1046/j.1365-2362.2000.00751.x 11122326
Braun T. P., Grossberg A. J., Krasnow S. M., Levasseur P. R., Szumowski M., Zhu X. X., et al. (2013). Cancer- and endotoxin-induced cachexia require intact glucocorticoid signaling in skeletal muscle. FASEB J. 27 3572–3582. 10.1096/fj.13-230375 23733748
Braun T. P., Szumowski M., Levasseur P. R., Grossberg A. J., Zhu X., Agarwal A., et al. (2014). Muscle atrophy in response to cytotoxic chemotherapy is dependent on intact glucocorticoid signaling in skeletal muscle. PLoS One 9:e106489. 10.1371/journal.pone.0106489 25254959
Braun T. P., Zhu X., Szumowski M., Scott G. D., Grossberg A. J., Levasseur P. R., et al. (2011). Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic-pituitary-adrenal axis. J. Exp Med. 208 2449–2463. 10.1084/jem.20111020 22084407
Brink M., Price S. R., Chrast J., Bailey J. L., Anwar A., Mitch W. E., et al. (2001). Angiotensin II Induces Skeletal Muscle Wasting through Enhanced Protein Degradation and Down-Regulates Autocrine Insulin-Like Growth Factor I. Endocrinology 142 1489–1496. 10.1210/endo.142.4.8082 11250929
Broussard S. R., McCusker R. H., Novakofski J. E., Strle K., Shen W. H., Johnson R. W., et al. (2003). Cytokine-hormone interactions: tumor necrosis factor alpha impairs biologic activity and downstream activation signals of the insulin-like growth factor I receptor in myoblasts. Endocrinology 144 2988–2996. 10.1210/en.2003-0087 12810554
Cai D., Frantz J. D., Tawa N. E., Melendez P. A., Oh B.-C., Lidov H. G. W., et al. (2004). IKKβ/NF-κB Activation Causes Severe Muscle Wasting in Mice. Cell 119 285–298. 10.1016/j.cell.2004.09.027 15479644
Cederholm T., Wretlind B., Hellström K., Andersson B., Engström L., Brismar K., et al. (1997). Enhanced generation of interleukins 1 beta and 6 may contribute to the cachexia of chronic disease. Am. J. Clin. Nutr. 65 876–882. 10.1093/ajcn/65.3.876 9062543
Ceelen J. J. M., Schols A. M. W. J., Kneppers A. E. M., Rosenbrand R. P. H. A., Drożdż M. M., van Hoof S. J., et al. (2018a). Altered protein turnover signaling and myogenesis during impaired recovery of inflammation-induced muscle atrophy in emphysematous mice. Sci. Rep. 8:10761. 10.1038/s41598-018-28579-4 30018383
Ceelen J. J. M., Schols A. M. W. J., Thielen N. G. M., Haegens A., Gray D. A., Kelders M. C. J. M., et al. (2018b). Pulmonary inflammation-induced loss and subsequent recovery of skeletal muscle mass require functional poly-ubiquitin conjugation. Resp. Res. 19:80. 10.1186/s12931-018-0753-8 29720191
Ceelen J. J. M., Schols A. M. W. J., van Hoof S. J., de Theije C. C., Verhaegen F., Langen R. C. J., (2017). Differential regulation of muscle protein turnover in response to emphysema and acute pulmonary inflammation. Resp. Res. 18 75–75. 10.1186/s12931-017-0531-z 28464882
Ceelen J. J., Langen R. C., Schols A. M., (2014). Systemic inflammation in chronic obstructive pulmonary disease and lung cancer: common driver of pulmonary cachexia? Curr. Opin. Supp. Palliat Care 8 339–345. 10.1097/spc.0000000000000088 25158627
Cella P. S., Marinello P. C., Borges F. H., (2020). Creatine supplementation in Walker-256 tumor-bearing rats prevents skeletal muscle atrophy by attenuating systemic inflammation and protein degradation signaling. Eur. J. Nutr. 59 661–669. 10.1007/s00394-019-01933-6 30806774
Chen C. Y., Tsai C. Y., Lee P. C., Lee S. D., (2013). Long-term etanercept therapy favors weight gain and ameliorates cachexia in rheumatoid arthritis patients: roles of gut hormones and leptin. Curr. Pharm. Des. 19 1956–1964. 10.2174/1381612811319100014 23305268
Chen M., Hsu W., Hwang P., (2016). Combined administration of fucoidan ameliorates tumor and chemotherapy-induced skeletal muscle atrophy in bladder cancer-bearing mice. Oncotarget 7 51608–51618. 10.18632/oncotarget.9958 27323407
Cheung W., Yu P. X., Little B. M., Cone R. D., Marks D. L., Mak R. H., (2005). Role of leptin and melanocortin signaling in uremia-associated cachexia. J. Clin. Invest. 115 1659–1665. 10.1172/jci22521 15931394
Chiappalupi S., Sorci G., Vukasinovic A., Salvadori L., Sagheddu R., Coletti D., et al. (2020). Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia. J. Cachexia Sarcopenia Muscle 11 929–946. 10.1002/jcsm.12561 32159297
Chikanza I. C., Kingsley G., Panayi G. S., (1995). Peripheral blood and synovial fluid monocyte expression of interleukin 1 alpha and 1 beta during active rheumatoid arthritis. J. Rheumatol. 22 600–606.
Ciechanover A., (2005). Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol. 6 79–87. 10.1038/nrm1552 15688069
Costelli P., Muscaritoli M., Bonetto A., (2008). Muscle myostatin signalling is enhanced in experimental cancer cachexia. Eur. J. Clin. Invest. 38 531–538. 10.1111/j.1365-2362.2008.01970.x 18578694
Crespigio J., Weidmann R., da Silva F. F., Macioszek M. A., de Oliveira J. F., de Souza M., et al. (2016). Impaired Glucocorticoid Synthesis in Cancer CachexiaAnorexia Syndrome in an Experimental Model. Ann. Clin. Exp. Metab. 1:1008.
Creutzberg E. C., Wouters E. F., Mostert R., Weling-Scheepers C. A., Schols A. M., (2003). Efficacy of nutritional supplementation therapy in depleted patients with chronic obstructive pulmonary disease. Nutrition 19 120–127. 10.1016/s0899-9007(02)00841-9
Crofford L. J., (2002). The hypothalamic-pituitary-adrenal axis in the pathogenesis of rheumatic diseases. Endocrinol. Metab. Clin. North Am. 31 1–13. 10.1016/s0889-8529(01)00004-4
Crul T., Testelmans D., Spruit M. A., Troosters T., Gosselink R., Geeraerts I., et al. (2010). Gene Expression Profiling in Vastus Lateralis Muscle During an Acute Exacerbation of COPD. Cell. Physiol. Biochem. 25 491–500. 10.1159/000303054 20332630
Curti B. D., Urba W. J., Longo D. L., Janik J. E., Sharfman W. H., Miller L. L., et al. (1996). Endocrine effects of IL-1 alpha and beta administered in a phase I trial to patients with advanced cancer. J. Immunother. Emphasis Tumor. Immunol. 19 142–148. 10.1097/00002371-199603000-00007 8732697
Daas S. I., Rizeq B. R., Nasrallah G. K., (2019). Adipose tissue dysfunction in cancer cachexia. J. Cell. Physiol. 234 13–22. 10.1002/jcp.26811 30078199
Daou H. N., (2020). Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 318 R296–R310. 10.1152/ajpregu.00147.2019 31823669
Das S. K., Eder S., Schauer S., Diwoky C., Temmel H., Guertl B., et al. (2011). Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333 233–238. 10.1126/science.1198973 21680814
De Larichaudy J., Zufferli A., Serra F., (2012). TNF-α- and tumor-induced skeletal muscle atrophy involves sphingolipid metabolism. Skeletal Muscle 2:2. 10.1186/2044-5040-2-2 22257771
de Theije C. C., Schols A., Lamers W. H., Ceelen J. J. M., van Gorp R. H., Hermans J. J. R., et al. (2018). Glucocorticoid Receptor Signaling Impairs Protein Turnover Regulation in Hypoxia-Induced Muscle Atrophy in Male Mice. Endocrinology 159 519–534. 10.1210/en.2017-00603 29069356
Deans D. A. C., Tan B. H., Wigmore S. J., Ross J. A., de Beaux A. C., Paterson-Brown S., et al. (2009). The influence of systemic inflammation, dietary intake and stage of disease on rate of weight loss in patients with gastro-oesophageal cancer. Br. J. Cancer 100 63–69. 10.1038/sj.bjc.6604828 19127266
Dehoux M. J., van Beneden R. P., Fernández-Celemín L., Lause P. L., Thissen J. P., (2003). Induction of MafBx and Murf ubiquitin ligase mRNAs in rat skeletal muscle after LPS injection. FEBS Lett. 544 214–217. 10.1016/s0014-5793(03)00505-2
Demirkapi M., Yildizgoren M. T., Guler H., Turhanoglu A. D., (2017). The Effect of Anti-Tumor Necrosis Factor-Alpha Treatment on Muscle Performance and Endurance in Patients With Ankylosing Spondylitis: A Prospective Follow-Up Study. Arch. Rheumatol. 32 309–314. 10.5606/ArchRheumatol.2017.6335 29901011
Di Francia M., Barbier D., Mege J. L., Orehek J., (1994). Tumor necrosis factor-alpha levels and weight loss in chronic obstructive pulmonary disease. Am. J. Resp. Critic. Care Med. 150 1453–1455. 10.1164/ajrccm.150.5.7952575 7952575
Dillon E. L., Volpi E., Wolfe R. R., (2007). Amino acid metabolism and inflammatory burden in ovarian cancer patients undergoing intense oncological therapy. Clin. Nutr. 26 736–743. 10.1016/j.clnu.2007.07.004 17804123
Dixit V. D., Schaffer E. M., Pyle R. S., Collins G. D., Sakthivel S. K., Palaniappan R., et al. (2004). Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J. Clin. Invest. 114 57–66. 10.1172/jci21134 15232612
Dogra C., Changotra H., Mohan S., Kumar A., (2006). Tumor necrosis factor-like weak inducer of apoptosis inhibits skeletal myogenesis through sustained activation of nuclear factor-kappaB and degradation of MyoD protein. J. Biol. Chem. 281 10327–10336. 10.1074/jbc.M511131200 16461349
Dogra C., Changotra H., Wedhas N., Qin X., Wergedal J. E., Kumar A., (2007). TNF-related weak inducer of apoptosis (TWEAK) is a potent skeletal muscle-wasting cytokine. FASEB J. 21 1857–1869. 10.1096/fj.06-7537com 17314137
Douglas E., McMillan D. C., (2014). Towards a simple objective framework for the investigation and treatment of cancer cachexia: the Glasgow Prognostic Score. Cancer Treat Rev. 40 685–691. 10.1016/j.ctrv.2013.11.007 24321611
Dulger H., Alici S., Sekeroglu M. R., Erkog R., Ozbek H., Noyan T., et al. (2004). Serum levels of leptin and proinflammatory cytokines in patients with gastrointestinal cancer. Int. J. Clin. Pract. 58 545–549. 10.1111/j.1368-5031.2004.00149.x 15311551
Ebisui C., Tsujinaka T., Morimoto T., Kan K., Iijima S., Yano M., et al. (1995). Interleukin-6 induces proteolysis by activating intracellular proteases (cathepsins B and L, proteasome) in C2C12 myotubes. Clin. Sci. 89 431–439. 10.1042/cs0890431 7493444
Egerman M. A., Cadena S. M., Gilbert J. A., Meyer A., Nelson H. N., Swalley S. E., et al. (2015). GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration. Cell Metab. 22 164–174. 10.1016/j.cmet.2015.05.010 26001423
Eid A. A., Ionescu A. A., Nixon L. S., Lewis-Jenkins V., Matthews S. B., Griffiths T. L., et al. (2001). Inflammatory Response and Body Composition in Chronic Obstructive Pulmonary Disease. Am. J. Resp. Critic. Care Med. 164 1414–1418. 10.1164/ajrccm.164.8.2008109 11704588
El Shafey N., Guesnon M., Simon F., Deprez E., Cosette J., Stockholm D., et al. (2016). Inhibition of the myostatin/Smad signaling pathway by short decorin-derived peptides. Exp. Cell Res. 341 187–195. 10.1016/j.yexcr.2016.01.019 26844629
Elkan A. C., Engvall I. L., Cederholm T., Hafstrom I., (2009). Rheumatoid cachexia, central obesity and malnutrition in patients with low-active rheumatoid arthritis: feasibility of anthropometry. Mini Nutritional Assessment and body composition techniques. Eur. J. Nutr. 48 315–322. 10.1007/s00394-009-0017-y 19333642
Engeland W. C., Yoder J. M., Karsten C. A., Kofuji P., (2016). Phase-Dependent Shifting of the Adrenal Clock by Acute Stress-Induced ACTH. Front. Endocrinol. 7:81. 10.3389/fendo.2016.00081 27445984
Engvall I. L., Elkan A. C., Tengstrand B., Cederholm T., Brismar K., Hafstrom I., (2008). Cachexia in rheumatoid arthritis is associated with inflammatory activity, physical disability, and low bioavailable insulin-like growth factor. Scand. J. Rheumatol. 37 321–328. 10.1080/03009740802055984 18666027
Evans W. J., Morley J. E., Argilés J., Bales C., Baracos V., Guttridge D., et al. (2008). Cachexia: A new definition. Clin. Nutr. 27 793–799. 10.1016/j.clnu.2008.06.013 18718696
Ezeoke C. C., Morley J. E., (2015). Pathophysiology of anorexia in the cancer cachexia syndrome. J. Cachexia Sarcopenia Muscle 6 287–302. 10.1002/jcsm.12059 26675762
Falconer J. S., Fearon K. C. H., Plester C. E., Ross J. A., Carter D. C., (1994). Cytokines, the Acute-Phase Response, and Resting Energy Expenditure in Cachectic Patients with Pancreatic Cancer. Ann. Surg. 219 325–331. 10.1097/00000658-199404000-00001 7512810
Fearon K. C., Voss A. C., Hustead D. S., (2006). Definition of cancer cachexia: effect of weight loss, reduced food intake, and systemic inflammation on functional status and prognosis. Am. J. Clin. Nutr. 83 1345–1350. 10.1093/ajcn/83.6.1345 16762946
Fearon K., Arends J., Baracos V., (2013). Understanding the mechanisms and treatment options in cancer cachexia. Nat. Rev. Clin. Oncol. 10 90–99. 10.1038/nrclinonc.2012.209 23207794
Fearon K., Strasser F., Anker S. D., Bosaeus I., Bruera E., Fainsinger R. L., et al. (2011). Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12 489–495. 10.1016/s1470-2045(10)70218-7
Fennen M., Pap T., Dankbar B., (2016). Smad-dependent mechanisms of inflammatory bone destruction. Arthr. Res. Ther. 18:279. 10.1186/s13075-016-1187-7 27906049
Fenton C. G., Webster J. M., Martin C. S., Fareed S., Wehmeyer C., Mackie H., et al. (2019). Therapeutic glucocorticoids prevent bone loss but drive muscle wasting when administered in chronic polyarthritis. Arthr. Res. Ther. 21:182. 10.1186/s13075-019-1962-3 31370858
Files D. C., D’Alessio F. R., Johnston L. F., Kesari P., Aggarwal N. R., Garibaldi B. T., et al. (2012). A critical role for muscle ring finger-1 in acute lung injury-associated skeletal muscle wasting. Am. J. Respir. Crit. Care Med. 185 825–834. 10.1164/rccm.201106-1150OC 22312013
Finn P. F., Dice J. F., (2006). Proteolytic and lipolytic responses to starvation. Nutrition 22 830–844. 10.1016/j.nut.2006.04.008 16815497
Flint T. R., Janowitz T., Connell C. M., Roberts E. W., Denton A. E., Coll A. P., et al. (2016). Tumor-Induced IL-6 Reprograms Host Metabolism to Suppress Anti-tumor Immunity. Cell Metab. 24 672–684. 10.1016/j.cmet.2016.10.010 27829137
Flores E. A., Bistrian B. R., Pomposelli J. J., Dinarello C. A., Blackburn G. L., Istfan N. W., (1989). Infusion of tumor necrosis factor/cachectin promotes muscle catabolism in the rat. A Synergistic effect with interleukin 1. J. Clin. Invest. 83 1614–1622. 10.1172/JCI114059 2785120
Frost R. A., Nystrom G. J., Lang C. H., (2003). Tumor necrosis factor-alpha decreases insulin-like growth factor-I messenger ribonucleic acid expression in C2C12 myoblasts via a Jun N-terminal kinase pathway. Endocrinology 144 1770–1779. 10.1210/en.2002-220808 12697682
Fujita J., Tsujinaka T., Jano M., (1996). Anti−interleukin−6 receptor antibody prevents muscle atrophy in colon−26 adenocarcinoma−bearing mice with modulation of lysosomal and ATP−ubiquitin−dependent proteolytic pathways. Int. J. Cancer 68 637–643. 10.1002/(SICI)1097-0215(19961127)68:5<637::AID-IJC14<3.0.CO;2-Z
Galic S., Oakhill J. S., Steinberg G. R., (2010). Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol. 316 129–139. 10.1016/j.mce.2009.08.018 19723556
García-Martínez C., López-Soriano F. J., Argilés J. M., (1994). Interleukin-6 does not activate protein breakdown in rat skeletal muscle. Cancer Lett. 76 1–4. 10.1016/0304-3835(94)90126-0
Gayan-Ramirez G., Vanderhoydonc F., Verhoeven G., Decramer M., (1999). Acute treatment with corticosteroids decreases IGF-1 and IGF-2 expression in the rat diaphragm and gastrocnemius. Am. J. Respir. Crit. Care Med. 159 283–289. 10.1164/ajrccm.159.1.9803021 9872851
Gelin J., Moldawer L. L., Lönnroth C., Sherry B., Chizzonite R., Lundholm K., (1991). Role of Endogenous Tumor Necrosis Factor α and Interleukin 1 for Experimental Tumor Growth and the Development of Cancer Cachexia. Cancer Res. 51 415–421.
Gingras A. C., Raught B., Sonenberg N., (1999). eIF4 Initiation Factors: Effectors of mRNA Recruitment to Ribosomes and Regulators of Translation. Ann. Rev. Biochem. 68 913–963. 10.1146/annurev.biochem.68.1.913 10872469
Girgenrath M., Weng S., Kostek C. A., Browning B., Wang M., Brown S. A. N., et al. (2006). TWEAK, via its receptor Fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration. EMBO J. 25 5826–5839. 10.1038/sj.emboj.7601441 17124496
Goncalves M. D., Hwang S. K., Pauli C., Murphy C. J., Cheng Z., Hopkins B. D., et al. (2018). Fenofibrate prevents skeletal muscle loss in mice with lung cancer. Proc. Natl. Acad. Sci. U S A. 115 E743–E752. 10.1073/pnas.1714703115 29311302
Goodman M. N., (1994). Interleukin-6 induces skeletal muscle protein breakdown in rats. Proc. Soc. Exp. Biol. Med. 205 182–185. 10.3181/00379727-205-43695 8108469
Granado M., Martiìn A. I., Priego T., Loìpez-Calderoìn A., Villanuìa M. A., (2006). Tumour necrosis factor blockade did not prevent the increase of muscular muscle RING finger-1 and muscle atrophy F-box in arthritic rats. J. Endocrinol. 191 319–326. 10.1677/joe.1.06931 17065414
Grill H. J., Carmody J. S., Amanda Sadacca L., Williams D. L., Kaplan J. M., (2004). Attenuation of lipopolysaccharide anorexia by antagonism of caudal brain stem but not forebrain GLP-1-R. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287 R1190–R1193. 10.1152/ajpregu.00163.2004 15231492
Gueta I., Altman A., Shoenfeld Y., (2010). [The effect of blocking TNF-alpha in patients with cancer-related cachexia and anorexia]. Harefuah 149 512–514.
Guttridge D. C., Mayo M. W., Madrid L. V., Wang C. Y., Baldwin A. S., Jr. (2000). NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289 2363–2366. 10.1126/science.289.5488.2363 11009425
Haddad F., Zaldivar F., Cooper D. M., (2005). IL-6-induced skeletal muscle atrophy. J.Appl. Physiol. 10.1152/japplphysiol.01026.2004 15542570
Han M. S., White A., Perry R. J., Camporez J. P., Hidalgo J., Shulman G. I., et al. (2020). Regulation of adipose tissue inflammation by interleukin 6. Proc. Natl. Acad. Sci. U S A. 117 2751–2760. 10.1073/pnas.1920004117 31980524
Hanada T., Toshinai K., Kajimura N., Nara-Ashizawa N., Tsukada T., Hayashi Y., et al. (2003). Anti-cachectic effect of ghrelin in nude mice bearing human melanoma cells. Biochem. Biophys. Res. Commun. 301 275–279. 10.1016/s0006-291x(02)03028-0
Hanna R. A., Quinsay M. N., Orogo A. M., Giang K., Rikka S., Gustafsson ÅB., (2012). Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 287 19094–19104. 10.1074/jbc.M111.322933 22505714
Hardy R. S., Doig C. L., Hussain Z., O’Leary M., Morgan S. A., Pearson M. J., et al. (2016). 11beta-Hydroxysteroid dehydrogenase type 1 within muscle protects against the adverse effects of local inflammation. J. Pathol. 240 472–483. 10.1002/path.4806 27578244
Hardy R. S., Raza K., Cooper M. S., (2014). Glucocorticoid metabolism in rheumatoid arthritis. Ann. N Y Acad. Sci. 1318 18–26. 10.1111/nyas.12389 24579884
Hardy R., Rabbitt E. H., Filer A., Emery P., Hewison M., Stewart P. M., et al. (2008). Local and systemic glucocorticoid metabolism in inflammatory arthritis. Ann. Rheum. Dis. 67 1204–1210. 10.1136/ard.2008.090662 18420938
Harno E., White A., (2010). Will treating diabetes with 11b-HSD1 inhibitors affect the HPA axis? Trends Endocrinol. Metab. 21 619–627. 10.1016/j.tem.2010.06.004 20594868
Hay N., Sonenberg N., (2004). Upstream and downstream of mTOR. Gen. Dev. 18 1926–1945.
He W. A., Berardi E., Cardillo V. M., (2013). NF-κB–mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J. Clin. Invest. 123 4821–4835. 10.1172/JCI68523 24084740
Heinrich P. C., Behrmann I., Haan S., Hermanns H. M., Müller-Newen G., Schaper F., (2003). Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374(Pt 1), 1–20. 10.1042/BJ20030407 12773095
Hess J., Angel P., Schorpp-Kistner M., (2004). AP-1 subunits: quarrel and harmony among siblings. J. Cell. Sci. 117(Pt 25), 5965–5973. 10.1242/jcs.01589 15564374
Hoene M., Runge H., Häring H. U., Schleicher E. D., Weigert C., (2012). Interleukin-6 promotes myogenic differentiation of mouse skeletal muscle cells: role of the STAT3 pathway. Am. J. Physiol. Cell Physiol. 304 C128–C136. 10.1152/ajpcell.00025.2012 23114963
Imae M., Fu Z., Yoshida A., Noguchi T., Kato H., (2003). Nutritional and hormonal factors control the gene expression of FoxOs, the mammalian homologues of DAF-16. J. Mol. Endocrinol. 30 253–262. 10.1677/jme.0.0300253 12683947
Inaba S., Hinohara A., Tachibana M., Tsujikawa K., Fukada S. I., (2018). Muscle regeneration is disrupted by cancer cachexia without loss of muscle stem cell potential. PLoS One 13:e0205467. 10.1371/journal.pone.0205467 30300394
Jackman R. W., Kandarian S. C., (2004). The molecular basis of skeletal muscle atrophy. Am. J. Physiol. Cell Physiol. 287 C834–C843. 10.1152/ajpcell.00579.2003 15355854
Jatoi A., Dakhil S. R., Nguyen P. L., Sloan J. A., Kugler J. W., Rowland K. M., Jr.et al. (2007). A placebo-controlled double blind trial of etanercept for the cancer anorexia/weight loss syndrome: results from N00C1 from the North Central Cancer Treatment Group. Cancer 110 1396–1403. 10.1002/cncr.22944 17674351
Jatoi A., Ritter H. L., Dueck A., Nguyen P. L., Nikcevich D. A., Luyun R. F., et al. (2010). A placebo-controlled, double-blind trial of infliximab for cancer-associated weight loss in elderly and/or poor performance non-small cell lung cancer patients (N01C9). Lung Cancer 68 234–239. 10.1016/j.lungcan.2009.06.020 19665818
Jepson M. M., Pell J. M., Bates P. C., Millward D. J., (1986). The effects of endotoxaemia on protein metabolism in skeletal muscle and liver of fed and fasted rats. Biochem. J. 235 329–336. 10.1042/bj2350329 3527153
Johnen H., Lin S., Kuffner T., Brown D. A., Tsai V. W., Bauskin A. R., et al. (2007). Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1. Nat. Med. 13 1333–1340. 10.1038/nm1677 17982462
Johnston A. J., Murphy K. T., Jenkinson L., Laine D., Emmrich K., Faou P., et al. (2015). Targeting of Fn14 Prevents Cancer-Induced Cachexia and Prolongs Survival. Cell 162 1365–1378. 10.1016/j.cell.2015.08.031 26359988
Jones J. E., Cadena S. M., Gong C., Wang X., Chen Z., Wang S. X., et al. (2018). Supraphysiologic Administration of GDF11 Induces Cachexia in Part by Upregulating GDF15. Cell Rep. 22 1522–1530. 10.1016/j.celrep.2018.01.044 29425507
Kalantar-Zadeh K., (2005). Recent advances in understanding the malnutrition-inflammation-cachexia syndrome in chronic kidney disease patients: What is next? Semin. Dial. 18 365–369. 10.1111/j.1525-139X.2005.00074.x 16191172
Kandarian S. C., Jackman R. W., (2005). Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 33 155–165. 10.1002/mus.20442 16228971
Kent S., Rodriguez F., Kelley K. W., Dantzer R., (1994). Reduction in food and water intake induced by microinjection of interleukin-1 beta in the ventromedial hypothalamus of the rat. Physiol. Behav. 56 1031–1036. 10.1016/0031-9384(94)90339-5
Kim S., Lee M. J., Choi J. Y., Park D. H., Kwak H. B., Moon S., et al. (2018). Roles of Exosome-Like Vesicles Released from Inflammatory C2C12 Myotubes: Regulation of Myocyte Differentiation and Myokine Expression. Cell Physiol. Biochem. 48 1829–1842. 10.1159/000492505 30092568
Koehler F., Doehner W., Hoernig S., Witt C., Anker S. D., John M., (2007). Anorexia in chronic obstructive pulmonary disease–association to cachexia and hormonal derangement. Int. J. Cardiol. 119 83–89. 10.1016/j.ijcard.2006.07.088 17064790
Komatsu R., Okazaki T., Ebihara S., (2018). Aspiration pneumonia induces muscle atrophy in the respiratory, skeletal, and swallowing systems. J. Cachexia Sarcopenia Muscle 9 643–653. 10.1002/jcsm.12297 29790300
Kramer H. F., Goodyear L. J., (2007). Exercise, MAPK, and NF-κB signaling in skeletal muscle. J. Appl. Physiol. 103 388–395. 10.1152/japplphysiol.00085.2007 17303713
Kwan H. Y., Maddocks M., Nolan C. M., Jones S. E., Patel S., Barker R. E., et al. (2019). The prognostic significance of weight loss in chronic obstructive pulmonary disease-related cachexia: a prospective cohort study. J. Cachexia Sarcopenia Muscle 10 1330–1338. 10.1002/jcsm.12463 31207189
Kyaw M., Yoshizumi M., Tsuchiya K., (2002). Antioxidants inhibit endothelin-1 (1-31)-induced proliferation of vascular smooth muscle cells via the inhibition of mitogen-activated protein (MAP) kinase and activator protein-1 (AP-1). Biomed. Pharmacol. 64 1521–1531. 10.1016/s0006-2952(02)01349-7
Ladner K. J., Caligiuri M. A., Guttridge D. C., (2003). Tumor Necrosis Factor-regulated Biphasic Activation of NF-κB Is Required for Cytokine-induced Loss of Skeletal Muscle Gene Products. J. Biol. Chem. 278 2294–2303. 10.1074/jbc.M207129200 12431991
Langen R. C. J., Haegens A., Vernooy J. H. J., Wouters E. F. M., Winther M. P. J. D., Carlsen H., et al. (2012). NF-κB Activation Is Required for the Transition of Pulmonary Inflammation to Muscle Atrophy. Am. J. Resp. Cell Mol. Biol. 47 288–297. 10.1165/rcmb.2011-0119OC 22538866
Langen R. C. J., van der Velden J. L. J., Schols A. M. W. J., Kelders M. C. J. M., Wouters E. F. M., Janssen-Heininger Y. M. W., (2004). Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization. FASEB J. 18 227–237. 10.1096/fj.03-0251com 14769817
Langen R. C., Schols A. M., Kelders M. C., van der Velden J. L., Wouters E. F., Janssen-Heininger Y. M., (2006). Muscle wasting and impaired muscle regeneration in a murine model of chronic pulmonary inflammation. Am. J. Respir. Cell Mol. Biol. 35 689–696. 10.1165/rcmb.2006-0103OC 16794259
Langen R. C., Schols A. M., Kelders M. C., Wouters E. F., Janssen-Heininger Y. M., (2001). Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-kappaB. FASEB J. 15 1169–1180. 10.1096/fj.00-0463 11344085
Laurens C., Parmar A., Murphy E., Carper D., Lair B., Maes P., et al. (2020). Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. JCI Insight 5:e131870. 10.1172/jci.insight.131870 32106110
Laviano A., Meguid M. M., Rossi-Fanelli F., (2003). Cancer anorexia: clinical implications, pathogenesis, and therapeutic strategies. Lancet Oncol. 4 686–694. 10.1016/S1470-2045(03)01247-6
Layé S., Gheusi G., Cremona S., Combe C., Kelley K., Dantzer R., et al. (2000). Endogenous brain IL-1 mediates LPS-induced anorexia and hypothalamic cytokine expression. Am. J. Physiol. Regul. Integr. Compar. Physiol. 279 R93–R98. 10.1152/ajpregu.2000.279.1.R93 10896869
Lee H., Heo J. W., Kim A. R., (2019). Z-ajoene from Crushed Garlic Alleviates Cancer-Induced Skeletal Muscle Atrophy. Nutrients 11:2724. 10.3390/nu11112724 31717643
Lee J. H., Jun H. S., (2019). Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front. Physiol. 10:42. 10.3389/fphys.2019.00042 30761018
Lee P., Greenfield J. R., Ho K. K. Y., Fulham M. J., (2010). A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 299 E601–E606. 10.1152/ajpendo.00298.2010 20606075
Li G., Klein R. L., Matheny M., King M. A., Meyer E. M., Scarpace P. J., (2002). Induction of uncoupling protein 1 by central interleukin-6 gene delivery is dependent on sympathetic innervation of brown adipose tissue and underlies one mechanism of body weight reduction in rats. Neuroscience 115 879–889. 10.1016/S0306-4522(02)00447-5
Li W. G., Gavrila D., Liu X., Wang L., Gunnlaugsson S., Stoll L. L., et al. (2004). Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells. Circulation 109 2221–2226. 10.1161/01.Cir.0000127956.43874.F2
Li W., Moylan J. S., Chambers M. A., (2009). Interleukin-1 stimulates catabolism in C2C12 myotubes. Muscle Cell Biol. Cell Motility 297 C709–C714. 10.1152/ajpcell.00626.2008 19625606
Li Y.-P., Chen Y., John J., Moylan J., Jin B., Mann D. L., et al. (2005). TNF-α acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J. 19 362–370. 10.1096/fj.04-2364com 15746179
Liu X., Manzano G., Lovett D. H., Kim H. T., (2010). Role of AP-1 and RE-1 binding sites in matrix metalloproteinase-2 transcriptional regulation in skeletal muscle atrophy. Biochem. Biophys. Res. Commun. 396 219–223. 10.1016/j.bbrc.2010.04.067 20398633
Llovera M., Garcıìa-Martıìnez C., López-Soriano J. N., Agell N., López-Soriano F. J., Garcia I., et al. (1998). Protein turnover in skeletal muscle of tumour-bearing transgenic mice overexpressing the soluble TNF receptor-1. Cancer Lett. 130:137 10.1016/S0304-3835(98)00137-2
Llovera M., López-Soriano F. J., Argilés J. M., (1993). Effects of tumor necrosis factor-alpha on muscle-protein turnover in female Wistar rats. J. Natl. Cancer Inst. 85 1334–1339. 10.1093/jnci/85.16.1334 8340946
Lynch T. L. T., Ismahil M. A., Jegga A. G., Zilliox M. J., Troidl C., Prabhu S. D., et al. (2017). Cardiac inflammation in genetic dilated cardiomyopathy caused by MYBPC3 mutation. J. Mol. Cell. Cardiol. 102 83–93. 10.1016/j.yjmcc.2016.12.002 27955979
Macallan D. C., Cook E. B., Preedy V. R., Griffin G. E., (1996). The effect of endotoxin on skeletal muscle protein gene expression in the rat. Int. J. Biochem. Cell Biol. 28 511–520. 10.1016/1357-2725(95)00170-0
MacDonald E. M., Simmers J. L., Andres-Mateos E., Mejias-Estevez R. M., Lee S. J., Cohn R. D., (2012). T.O.6 Myostatin inhibitor ActIIb rescues atrophy and protects muscle growth signaling pathways in immobilization but not denervation. Neuromuscul. Disord. 22:908. 10.1016/j.nmd.2012.06.343
Mak R. H., Cheung W., (2006). Energy homeostasis and cachexia in chronic kidney disease. Pediatr Nephrol. 21 1807–1814. 10.1007/s00467-006-0194-3 16897005
Mantovani G., Maccio A., Madeddu C., Mura L., Massa E., Mudu M. C., et al. (2001). Serum values of proinflammatory cytokines are inversely correlated with serum leptin levels in patients with advanced stage cancer at different sites. J. Mol. Med. 79 406–414. 10.1007/s001090100234 11466563
Marcora S. M., Chester K. R., Mittal G., Lemmey A. B., Maddison P. J., (2006). Randomized phase 2 trial of anti-tumor necrosis factor therapy for cachexia in patients with early rheumatoid arthritis. Am. J. Clin. Nutr. 84 1463–1472. 10.1093/ajcn/84.6.1463 17158431
Mastorakos G., Chrousos G. P., Weber J. S., (1993). Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. J. Clin. Endocrinol. Metab. 77 1690–1694. 10.1210/jcem.77.6.8263159 8263159
Matthys P., Dukmans R., Proost P., Van Damme J., Heremans H., Sobis H., et al. (1991). Severe cachexia in mice inoculated with interferon-γ-producing tumor cells. Int. J. Cancer 49 77–82. 10.1002/ijc.2910490115 1908442
McDonald M.-L. N., Wouters E. F. M., Rutten E., Casaburi R., Rennard S. I., Lomas D. A., et al. (2019). It’s more than low BMI: prevalence of cachexia and associated mortality in COPD. Respir. Res. 20:100. 10.1186/s12931-019-1073-3 31118043
Miao C., Lv Y., Zhang W., (2017). Pyrrolidine Dithiocarbamate (PDTC) Attenuates Cancer Cachexia by Affecting Muscle Atrophy and Fat Lipolysis. Front. Pharm. 8:915. 10.3389/fphar.2017.00915 29311924
Miller A., McLeod L., Alhayyani S., Szczepny A., Watkins D. N., Chen W., et al. (2017). Blockade of the IL-6 trans-signalling/STAT3 axis suppresses cachexia in Kras-induced lung adenocarcinoma. Oncogene 36 3059–3066. 10.1038/onc.2016.437 27893707
Miyamoto Y., Hanna D. L., Zhang W., Baba H., Lenz H. J., (2016). Molecular Pathways: Cachexia Signaling-A Targeted Approach to Cancer Treatment. Clin. Cancer Res. 22 3999–4004. 10.1158/1078-0432.CCR-16-0495 27340276
Moley J. F., Aamodt R., Rumble W., Kaye W., Norton J. A., (1987). Body Cell Mass in Cancer-Bearing and Anorexic Patients. J. Parenteral Enter. Nutr. 11 219–222. 10.1177/0148607187011003219 3474427
Molfino A., Iannace A., Colaiacomo M. C., Farcomeni A., Emiliani A., Gualdi G., et al. (2017). Cancer anorexia: hypothalamic activity and its association with inflammation and appetite-regulating peptides in lung cancer. J. Cachexia Sarcopenia Muscle 8 40–47. 10.1002/jcsm.12156 27897393
Moresi V., Ssergio A., Berghella L., (2019). The JAK/STAT Pathway in Skeletal Muscle Pathophysiology. Front. Physiol. 10:500. 10.3389/fphys.2019.00500 31114509
Morgan S. A., McCabe E. L., Gathercole L. L., Hassan-Smith Z. K., Larner D. P., Bujalska I. J., et al. (2014). 11beta-HSD1 is the major regulator of the tissue-specific effects of circulating glucocorticoid excess. Proc. Natl. Acad. Sci. U S A. 111 E2482–E2491. 10.1073/pnas.1323681111 24889609
Mrosovsky N., Molony L. A., Conn C. A., Kluger M. J., (1989). Anorexic effects of interleukin 1 in the rat. Am. J. Physiol. 257(6 Pt 2), R1315–R1321. 10.1152/ajpregu.1989.257.6.R1315 2603994
Muñoz-Cánoves P., Scheele C., Pedersen B. K., Serrano A. L., (2013). Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J. 280 4131–4148. 10.1111/febs.12338 23663276
Munro R., Capell H., (1997). Prevalence of low body mass in rheumatoid arthritis: association with the acute phase response. Ann. Rheumat. Dis. 56:326. 10.1136/ard.56.5.326 9175935
Murphy R. A., Wilke M. S., Perrine M., Pawlowicz M., Mourtzakis M., Lieffers J. R., et al. (2010). Loss of adipose tissue and plasma phospholipids: Relationship to survival in advanced cancer patients. Clin. Nutr. 29 482–487. 10.1016/j.clnu.2009.11.006 19959263
Nagaya N., Uematsu M., Kojima M., Date Y., Nakazato M., Okumura H., et al. (2001a). Elevated circulating level of ghrelin in cachexia associated with chronic heart failure: relationships between ghrelin and anabolic/catabolic factors. Circulation 104 2034–2038. 10.1161/hc4201.097836 11673342
Nagaya N., Uematsu M., Kojima M., Ikeda Y., Yoshihara F., Shimizu W., et al. (2001b). Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation 104 1430–1435. 10.1161/hc3601.095575 11560861
Nakashima J., Tachibana M., Ueno M., Miyajima A., Baba S., Murai M., (1998). Association between tumor necrosis factor in serum and cachexia in patients with prostate cancer. Clin. Cancer Res. 4 1743–1748.
Narsale A. A., Enos R. T., Puppa M. J., Chatterjee S., Murphy E. A., Fayad R., et al. (2015). Liver inflammation and metabolic signaling in ApcMin/+ mice: the role of cachexia progression. PLoS One 10:e0119888. 10.1371/journal.pone.0119888 25789991
Nishizawa H., Matsuda M., Yamada Y., Kawai K., Suzuki E., Makishima M., et al. (2004). Musclin, a novel skeletal muscle-derived secretory factor. J. Biol. Chem. 279 19391–19395. 10.1074/jbc.C400066200 15044443
Nolten W. E., Goldstein D., Lindstrom M., McKenna M. V., Carlson I. H., Trump D. L., et al. (1993). Effects of cytokines on the pituitary-adrenal axis in cancer patients. J. Interferon. Res. 13 349–357. 10.1089/jir.1993.13.349 8301155
Oh H. M., Yu C. R., Dambuza I., Marrero B., Egwuagu C. E., (2012). STAT3 protein interacts with Class O Forkhead transcription factors in the cytoplasm and regulates nuclear/cytoplasmic localization of FoxO1 and FoxO3a proteins in CD4(+) T cells. J. Biol. Chem. 287 30436–30443. 10.1074/jbc.M112.359661 22761423
Oliff A., Defeo-Jones D., Boyer M., Martinez D., Kiefer D., Vuocolo G., et al. (1987). Tumors secreting human TNF/cachectin induce cachexia in mice. Cell 50 555–563. 10.1016/0092-8674(87)90028-6
Op den Kamp C. M., Langen R. C., Snepvangers F. J., de Theije C. C., Schellekens J. M., et al. (2013). Nuclear transcription factor κ B activation and protein turnover adaptations in skeletal muscle of patients with progressive stages of lung cancer cachexia. Am. J. Clin. Nutr. 98 738–748. 10.3945/ajcn.113.058388 23902785
Ost M., Igual Gil C., Coleman V., Keipert S., Efstathiou S., Vidic V., et al. (2020). Muscle-derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress. EMBO Rep. 21:e48804. 10.15252/embr.201948804 32026535
Otero M., Nogueiras R., Lago F., Dieguez C., Gomez-Reino J. J., Gualillo O., (2004). Chronic inflammation modulates ghrelin levels in humans and rats. Rheumatology 43 306–310. 10.1093/rheumatology/keh055 14623951
Otis J. S., Niccoli S., Hawdon N., (2014). Pro−inflammatory mediation of myoblast proliferation. PLoS One 9:e92363. 10.1371/journal.pone.0092363 24647690
Pallafacchina G., Blaauw B., Schiaffino S., (2013). Role of satellite cells in muscle growth and maintenance of muscle mass. Nutr. Metab. Cardiovasc. Dis. 23(Suppl. 1), S12–S18. 10.1016/j.numecd.2012.02.002 22621743
Pansters N. A., Langen R. C., Wouters E. F., Schols A. M., (2013). Synergistic stimulation of myogenesis by glucocorticoid and IGF-I signaling. J. Appl. Physiol. 114 1329–1339. 10.1152/japplphysiol.00503.2012 22936724
Patel M. S., Lee J., Baz M., Wells C. E., Bloch S., Lewis A., et al. (2016). Growth differentiation factor-15 is associated with muscle mass in chronic obstructive pulmonary disease and promotes muscle wasting in vivo. J. Cachexia Sarcopenia Muscle 7 436–448. 10.1002/jcsm.12096 27239406
Paul P. K., Gupta S. K., Bhatnagar S., (2010). Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J. Cell Biol. 191 1395–1411. 10.1083/jcb.201006098 21187332
Pausch T., Hartwig W., Hinz U., Swolana T., Bundy B. D., Hackert T., et al. (2012). Cachexia but not obesity worsens the postoperative outcome after pancreatoduodenectomy in pancreatic cancer. Surgery 152(3 Suppl. 1), S81–S88. 10.1016/j.surg.2012.05.028 22770957
Pedersen B. K., Steensberg A., Fischer C., Keller C., Keller P., Plomgaard P., et al. (2003). Searching for the exercise factor: is IL-6 a candidate? J. Muscle Res. Cell Motility 24:113. 10.1023/A:1026070911202
Pedersen L., Idorn M., Olofsson, Gitte H., Lauenborg B., Nookaew I., et al. (2016). Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution. Cell Metab. 23 554–562. 10.1016/j.cmet.2016.01.011 26895752
Penna F., Costamagna D., Fanzani A., (2010). Muscle Wasting and Impaired Myogenesis in Tumor Bearing Mice Are Prevented by ERK Inhibition. PLoS One 5:e13604. 10.1371/journal.pone.0013604 21048967
Perdiguero E., Ruiz-Bonilla V., Gresh L., (2007). Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38alpha in abrogating myoblast proliferation. EMBO J. 26 1245–1256. 10.1038/sj.emboj.7601587 17304211
Petruzzelli M., Schweiger M., Schreiber R., Campos-Olivas R., Tsoli M., Allen J., et al. (2014). A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20 433–447. 10.1016/j.cmet.2014.06.011 25043816
Piya M. K., McTernan P. G., Kumar S., (2013). Adipokine inflammation and insulin resistance: the role of glucose, lipids and endotoxin. J. Endocrinol. 216 T1–T15. 10.1530/JOE-12-0498 23160966
Plata-Salamán C. R., Oomura Y., Kai Y., (1988). Tumor necrosis factor and interleukin-1β: suppression of food intake by direct action in the central nervous system. Brain Res. 448 106–114. 10.1016/0006-8993(88)91106-7
Polkey M. I., Praestgaard J., Berwick A., Franssen F. M. E., Singh D., Steiner M. C., et al. (2019). Activin Type II Receptor Blockade for Treatment of Muscle Depletion in Chronic Obstructive Pulmonary Disease. A Random. Trial. Am. J. Respir. Crit. Care Med. 199 313–320. 10.1164/rccm.201802-0286OC 30095981
Puppa M. J., Gao S., Narsale A. A., Carson J. A., (2014). Skeletal muscle glycoprotein 130’s role in Lewis lung carcinoma-induced cachexia. FASEB J. 28 998–1009. 10.1096/fj.13-240580 24145720
Quinkler M., Zehnder D., Lepenies J., Petrelli M. D., Moore J. S., Hughes S. V., et al. (2005). Expression of renal 11beta-hydroxysteroid dehydrogenase type 2 is decreased in patients with impaired renal function. Eur. J. Endocrinol. 153 291–299. 10.1530/eje.1.01954 16061836
Ramos E. J., Suzuki S., Marks D., Inui A., Asakawa A., Meguid M. M., (2004). Cancer anorexia-cachexia syndrome: cytokines and neuropeptides. Curr. Opin. Clin. Nutr. Metab. Care 7 427–434. 10.1097/01.mco.0000134363.53782.cb
Ratnam N. M., Peterson J. M., Talbert E. E., Ladner K. J., Rajasekera P. V., Schmidt C. R., et al. (2017). NF-κB regulates GDF-15 to suppress macrophage surveillance during early tumor development. J. Clin. Invest. 127 3796–3809. 10.1172/jci91561 28891811
Reid J., McKenna H. P., Fitzsimons D., McCance T. V., (2010). An exploration of the experience of cancer cachexia: what patients and their families want from healthcare professionals. Eur. J. Cancer Care 19 682–689. 10.1111/j.1365-2354.2009.01124.x 19912306
Rennard S. I., Flavin S. K., Agarwal P. K., Lo K. H., Barnathan E. S., (2013). Long-term safety study of infliximab in moderate-to-severe chronic obstructive pulmonary disease. Respir. Med. 107 424–432. 10.1016/j.rmed.2012.11.008 23246078
Rennard S. I., Fogarty C., Kelsen S., Long W., Ramsdell J., Allison J., et al. (2007). The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 175 926–934. 10.1164/rccm.200607-995OC 17290043
Riccardi D. M. D. R., das Neves R. X., de Matos-Neto E. M., Camargo R. G., Lima J. D. C. C., Radloff K., et al. (2020). Plasma Lipid Profile and Systemic Inflammation in Patients With Cancer Cachexia. Front. Nutr. 7:4. 10.3389/fnut.2020.00004
Riuzzi F., Sorci G., Sagheddu R., Chiappalupi S., Salvadori L., Donato R., (2018). RAGE in the pathophysiology of skeletal muscle. J Cachexia Sarcopenia Muscle 9 1213–1234. 10.1002/jcsm.12350 30334619
Rosa-Caldwell M. E., Brown J. L., Lee D. E., Wiggs M. P., Perry R. A., Jr. Haynie W. S., et al. (2020). Hepatic alterations during the development and progression of cancer cachexia. Appl. Physiol. Nutr. Metab. 45 500–512. 10.1139/apnm-2019-0407 31618604
Roubenoff R., (2009). Rheumatoid cachexia: a complication of rheumatoid arthritis moves into the 21st century. Arthritis Res. Ther. 11 108–108. 10.1186/ar2658 19439037
Ruggiero C., Lalli E., (2016). Impact of ACTH Signaling on Transcriptional Regulation of Steroidogenic Genes. Front. Endocrinol. 7:24. 10.3389/fendo.2016.00024 27065945
Russell S. T., Tisdale M. J., (2005). The role of glucocorticoids in the induction of zinc-alpha2-glycoprotein expression in adipose tissue in cancer cachexia. Br. J. Cancer 92 876–881. 10.1038/sj.bjc.6602404 15714206
Rydén M., Agustsson T., Laurencikiene J., Britton T., Sjölin E., Isaksson B., et al. (2008). Lipolysis–not inflammation, cell death, or lipogenesis–is involved in adipose tissue loss in cancer cachexia. Cancer 113 1695–1704. 10.1002/cncr.23802 18704987
Sanders K. J. C., Kneppers A. E. M., van de Bool C., Langen R. C. J., Schols A. M. W. J., (2016). Cachexia in chronic obstructive pulmonary disease: new insights and therapeutic perspective. J. Cachexia Sarcopenia Muscle 7 5–22. 10.1002/jcsm.12062 27066314
Sandri M., (2010). Autophagy in skeletal muscle. FEBS Lett. 584 1411–1416. 10.1016/j.febslet.2010.01.056 20132819
Santo R. C. E., Fernandes K. Z., Lora P. S., Filippin L. I., Xavier R. M., (2018). Prevalence of rheumatoid cachexia in rheumatoid arthritis: a systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 9 816–825. 10.1002/jcsm.12320 30133186
Sato S., Ogura Y., Kumar A., (2014). TWEAK/Fn14 Signaling Axis Mediates Skeletal Muscle Atrophy and Metabolic Dysfunction. Front. Immunol. 5:18. 10.3389/fimmu.2014.00018 24478779
Saxne T., Palladino M. A., Jr. Heinegãrd D., Talal N., Wollheim F. A., (1988). Detection of tumor necrosis factor α but not tumor necrosis factor β in rheumatoid arthritis synovial fluid and serum. Arthr. Rheumatism 31 1041–1045. 10.1002/art.1780310816 3136775
Schakman O., Dehoux M., Bouchuari S., Delaere S., Lause P., Decroly N., et al. (2012). Role of IGF-I and the TNFα/NF-κB pathway in the induction of muscle atrogenes by acute inflammation. Am. J. Physiol. Endocrinol. Metab. 303 E729–E739. 10.1152/ajpendo.00060.2012 22739109
Schiaffino S., Dyar K. A., Ciciliot S., Blaauw B., Sandri M., (2013). Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 280 4294–4314. 10.1111/febs.12253 23517348
Schindler C., Levy D. E., Decker T., (2007). JAK-STAT Signaling: From Interferons to Cytokines. J. Biol. Chem. 282 1–5. 10.1074/jbc.R700016200 17502367
Scicchitano B. M., Dobrowolny G., Sica G., Musaro A., (2018). Molecular Insights into Muscle Homeostasis. Atrophy Wasting. Curr. Genom. 19 356–369. 10.2174/1389202919666180101153911 30065611
Sealy M. J., Dechaphunkul T., van der Schans C. P., Krijnen W. P., Roodenburg J. L. N., Walker J., et al. (2020). Low muscle mass is associated with early termination of chemotherapy related to toxicity in patients with head and neck cancer. Clin. Nutr. 39 501–509. 10.1016/j.clnu.2019.02.029 30846324
Seto D. N., Kandarian S. C., Jackman R. W., (2015). A Key Role for Leukemia Inhibitory Factor in C26 Cancer Cachexia. J. Biol. Chem. 290 19976–19986. 10.1074/jbc.M115.638411 26092726
Sherry B. A., Gelin J., Fong Y., Marano M., Wei H., Cerami A., et al. (1989). Anticachectin/tumor necrosis factor-alpha antibodies attenuate development of cachexia in tumor models. FASEB J. 3 1956–1962. 10.1096/fasebj.3.8.2721856 2721856
Shimizu Y., Nagaya N., Isobe T., Imazu M., Okumura H., Hosoda H., et al. (2003). Increased plasma ghrelin level in lung cancer cachexia. Clin. Cancer Res. 9 774–778.
Shingu M., Nagai Y., Isayama T., Naono T., Nobunaga M., Nagai Y., (1993). The effects of cytokines on metalloproteinase inhibitors (TIMP) and collagenase production by human chondrocytes and TIMP production by synovial cells and endothelial cells. Clin. Exp. Immunol. 94 145–149. 10.1111/j.1365-2249.1993.tb05992.x 8403497
Silva K. A., Dong J., Dong Y., Dong Y., Schor N., Tweardy D. J., et al. (2015). Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia. J. Biol. Chem. 290 11177–11187. 10.1074/jbc.M115.641514 25787076
Silverman M. N., Sternberg E. M., (2012). Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann. N Y Acad. Sci. 1261 55–63. 10.1111/j.1749-6632.2012.06633.x 22823394
Song T., Manoharan P., Millay D. P., Koch S. E., Rubinstein J., Heiny J. A., et al. (2019). Dilated cardiomyopathy-mediated heart failure induces a unique skeletal muscle myopathy with inflammation. Skeletal Muscle 9:4. 10.1186/s13395-019-0189-y 30678732
Sorensen J., (2018). Lung Cancer Cachexia: Can Molecular Understanding Guide Clinical Management? Integr. Cancer Ther. 17 1000–1008. 10.1177/1534735418781743 29896984
Soygur H., Palaoglu O., Akarsu E. S., Cankurtaran E. S., Ozalp E., Turhan L., et al. (2007). Interleukin-6 levels and HPA axis activation in breast cancer patients with major depressive disorder. Prog. Neuropsyc. Biol. Psychiatry 31 1242–1247. 10.1016/j.pnpbp.2007.05.001 17587477
Steensberg A., Fischer C. P., Keller C., Møller K., Pedersen B. K., (2003). IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. American journal of physiology. Endocrinol. Metab. 285 E433–E437. 10.1152/ajpendo.00074.2003 12857678
Steffen B. T., Lees S. J., Booth F. W., (2008). Anti-TNF treatment reduces rat skeletal muscle wasting in monocrotaline-induced cardiac cachexia. J. Appl. Physiol. 105 1950–1958. 10.1152/japplphysiol.90884.2008 18801959
Stenvinkel P., Ketteler M., Johnson R. J., Lindholm B., Pecoits-Filho R., Riella M., et al. (2005). IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia–the good, the bad, and the ugly. Kidney Int. 67 1216–1233. 10.1111/j.1523-1755.2005.00200.x 15780075
Strassmann G., Fong M., Kenney J. S., Jacob C. O., (1992). Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J. Clin. Invest. 89 1681–1684. 10.1172/JCI115767 1569207
Subramaniam K., Fallon K., Ruut T., Lane D., McKay R., Shadbolt B., et al. (2015). Infliximab reverses inflammatory muscle wasting (sarcopenia) in Crohn’s disease. Aliment Pharmacol. Ther. 41 419–428. 10.1111/apt.13058 25580985
Suelves M., Lluís F., Ruiz V. D., Nebreda A. R., Muñoz-Cánoves P., (2004). Phosphorylation of MRF4 transactivation domain by p38 mediates repression of specific myogenic genes. EMBO J. 23 365–375. 10.1038/sj.emboj.7600056 14739931
Takabatake N., Nakamura H., Abe S., Inoue S., Hino T., Saito H., et al. (2000). The Relationship between Chronic Hypoxemia and Activation of the Tumor Necrosis Factor- α System in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Res. Critic. Care Med. 161 1179–1184. 10.1164/ajrccm.161.4.9903022 10764309
Tamura Y., Watanabe K., Kantani T., Hayashi J., Ishida N., Kaneki M., (2011). Upregulation of circulating IL-15 by treadmill running in healthy individuals: Is IL-15 an endocrine mediator of the beneficial effects of endurance exercise? Endocrine J. 58 211–215. 10.1507/endocrj.K10E-400 21307608
Tas F., Duranyildiz D., Argon A., Oguz H., Camlica H., Yasasever V., et al. (2005). Serum levels of leptin and proinflammatory cytokines in advanced-stage non-small cell lung cancer. Med. Oncol. 22 353–358. 10.1385/MO:22:4:353
Thomas D. R., (2002). Distinguishing starvation from cachexia. Clin. Geriatric Med. 18 883–891. 10.1016/S0749-0690(02)00032-0
Tomlinson J. W., Sinha B., Bujalska I., Hewison M., Stewart P. M., (2002). Expression of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue is not increased in human obesity. J. Clin. Endocrinol. Metab. 87 5630–5635. 10.1210/jc.2002-020687 12466364
Torelli G. F., Meguid M. M., Moldawer L. L., Edwards C. K., Kim H.-J., Carter J. L., et al. (1999). Use of recombinant human soluble TNF receptor in anorectic tumor-bearing rats. Am. J. Physiol. 277 R850–R855. 10.1152/ajpregu.1999.277.3.R850 10484503
Toussirot E., Mourot L., Dehecq B., Wendling D., Grandclement E., Dumoulin G., et al. (2014). TNFalpha blockade for inflammatory rheumatic diseases is associated with a significant gain in android fat mass and has varying effects on adipokines: a 2-year prospective study. Eur. J. Nutr. 53 951–961. 10.1007/s00394-013-0599-2 24173963
Tracey K. J., Wei H., Manogue K. R., Fong Y., Hesse D. G., Nguyen H. T., et al. (1988). Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. J. Exp. Med. 167 1211–1227. 10.1084/jem.167.3.1211 3351436
Trendelenburg A. U., Meyer A., Jacobi C., Feige J. N., Glass D. J., (2012). TAK-1/p38/nNFκB signaling inhibits myoblast differentiation by increasing levels of Activin A. Skeletal Muscle 2:3. 10.1186/2044-5040-2-3 22313861
Trendelenburg A. U., Meyer A., Rohner D., Boyle J., Hatakeyama S., Glass D. J., (2009). Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am. J. Physiol. Cell Physiol. 296 C1258–C1270. 10.1152/ajpcell.00105.2009 19357233
Truyens C., Torrico F., Angelo-Barrios A., Lucas R., Heremans H., Baetselier P. D., et al. (1995). The cachexia associated with Trypanosoma cruzi acute infection in mice is attenuated by anti-TNF-a, but not by anti-IL-6 or anti-IFN-7 antibodies. Parasite Immunol. 17 561–568. 10.1111/j.1365-3024.1995.tb00999.x 8817602
Tsujinaka T., Ebisui C., Fujita J., Kishibuchi M., Morimoto T., Ogawa A., et al. (1995). Muscle undergoes atrophy in association with increase of lysosomal cathepsin activity in interleukin-6 transgenic mouse. Biochem. Biophys. Res. Commun. 207 168–174. 10.1006/bbrc.1995.1168 7857261
Ulrich-Lai Y. M., Figueiredo H. F., Ostrander M. M., Choi D. C., Engeland W. C., Herman J. P., (2006). Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am. J. Physiol. Endocrinol. Metab. 291 E965–E973. 10.1152/ajpendo.00070.2006 16772325
Valentova M., Anker S. D., von Haehling S., (2020). Cardiac Cachexia Revisited: The Role of Wasting in Heart Failure. Heart Fail. Clin. 16 61–69. 10.1016/j.hfc.2019.08.006 31735316
van Hall G., Steensberg A., Sacchetti M., Fischer C., Keller C., Schjerling P., et al. (2003). Interleukin-6 stimulates lipolysis and fat oxidation in humans. J. Clin. Endocrinol. Metab. 88 3005–3010. 10.1210/jc.2002-021687 12843134
von Haehling S., Anker S. D., (2010). Cachexia as a major underestimated and unmet medical need: facts and numbers. J. Cachexia Sarcopenia Muscle 1 1–5. 10.1007/s13539-010-0002-6 21475699
Wang K. K. W., (2000). Calpain and caspase: can you tell the difference? TINS 23 20–26. 10.1016/s0166-2236(99)01479-4
Wedzicha J. A., Seemungal T. A., MacCallum P. K., Paul E. A., Donaldson G. C., Bhowmik A., et al. (2000). Acute exacerbations of chronic obstructive pulmonary disease are accompanied by elevations of plasma fibrinogen and serum IL-6 levels. Thromb Haemost 84 210–215. 10.1055/s-0037-1613998
White J. P., Puppa M. J., Gao S., Sato S., Welle S. L., Carson J. A., (2013). Muscle mTORC1 suppression by IL-6 during cancer cachexia: a role for AMPK. Am. J. Physiol. Endocrinol. Metabol. 304 E1042–E1052. 10.1152/ajpendo.00410.2012 23531613
Wiedenmann B., Malfertheiner P., Friess H., Ritch P., Arseneau J., Mantovani G., et al. (2008). A multicenter, phase II study of infliximab plus gemcitabine in pancreatic cancer cachexia. J. Support Oncol. 6 18–25.
Winkles J. A., (2008). The TWEAK-Fn14 cytokine-receptor axis: discovery, biology and therapeutic targeting. Nat. Rev. Drug Discov. 7 411–425. 10.1038/nrd2488 18404150
Yoon S., Woo S. U., Kang J. H., Kim K., Shin H. J., Gwak H. S., et al. (2012). NF-κB and STAT3 cooperatively induce IL6 in starved cancer cells. Oncogene 31 3467–3481. 10.1038/onc.2011.517 22105366
Zhang L., Chen Q., Chen Z., Wang Y., Gamboa J. L., Ikizler T. A., et al. (2020). Mechanisms Regulating Muscle Protein Synthesis in Chronic Kidney Disease. J. Am. Soc. Nephrol. 2020:2019121277. 10.1681/asn.2019121277 32764136
Zhang L., Du J., Hu Z., Han G., Delafontaine P., Garcia G., et al. (2009). IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting. J. Am. Soc. Nephrol. 20 604–612. 10.1681/asn.2008060628 19158350
Zhang L., Pan J., Dong Y., (2013). Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass. Cell Metab. 18 368–379. 10.1016/j.cmet.2013.07.012 24011072
Zhang W., Liu H. T., (2002). MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12 9–18. 10.1038/sj.cr.7290105 11942415
Zhou X., Wang J. L., Lu J., Song Y., Kwak K. S., Jiao Q., et al. (2010). Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142 531–543. 10.1016/j.cell.2010.07.011 20723755
Zhuang P., Zhang J., Wang Y., (2016). Reversal of muscle atrophy by Zhimu and Huangbai herb pair via activation of IGF-1/Akt and autophagy signal in cancer cachexia. Support Care Cancer 24 1189–1198. 10.1007/s00520-015-2892-5 26280404
Zimmers T. A., Davies M. V., Koniaris L. G., (2002). Induction of cachexia in mice by systemically administered myostatin. Science 296 1486–1488. 10.1126/science.1069525296/5572/1486