[fr] Description du sujet. En Europe, le traitement thermique des essences de bois indigènes devient progressivement uneréalité industrielle. Il offre une alternative prometteuse à la fois à l’utilisation de bois naturellement durables, essentiellement tropicaux, et à l’utilisation de traitements chimiques de préservation à base de biocides.
Objectifs. L’objectif de cette étude est de quantifier l’effet du traitement thermique sur les propriétés physico-mécaniques et de durabilité fongique de trois essences de feuillus indigènes (chêne, frêne, hêtre + hêtre étuvé).
Méthode. Le bois a été traité thermiquement selon le procédé Besson®. Les essais physiques et mécaniques standards, notamment la dureté, le module d’élasticité en flexion statique, les contraintes de rupture en flexion statique, en compression axiale, en flexion dynamique et le fendage, ont été effectués sur 15 échantillons traités et 15 échantillons témoins associés. Le
test de durabilité standard vis-à-vis des champignons lignivores a permis d’exposer 60 échantillons traités et 60 échantillons témoins à chaque champignon.
Résultats. Les résultats montrent une diminution de l’humidité d’équilibre et une augmentation de la stabilité dimensionnelle du bois traité thermiquement pour les trois espèces étudiées. Le module d’élasticité, la dureté et la résistance à la compression axiale augmentent légèrement après le traitement thermique, tandis que la résistance à la flexion statique, la résilience, ainsi
que la résistance au fendage peuvent considérablement diminuer. La durabilité fongique du bois de coeur de chêne et du frêne a augmenté jusqu’à la classe 1, le hêtre et le hêtre étuvé jusqu’à la classe 3. Conclusions. L’approche globale de cette étude permet une caractérisation assez complète et précise des propriétés technologiques de trois espèces feuillues indigènes après traitement thermique. De nouvelles utilisations de ces espèces indigènes peuvent ainsi être explorées. [en] Description of the subject. In Europe, the heat treatment of native wood species is gradually becoming an industrial reality. It provides a promising alternative to both the use of naturally durable, essentially tropical woods and the use of chemical preservative treatments based on biocides.
Objectives. The aim of this study is to quantify the effect of heat treatment on the physico-mechanical and decay resistance properties of three native hardwood species (oak, ash, beech + steamed beech).
Method. The wood was heat-treated in accordance with the Besson® process. The standard physical and mechanical tests including hardness, modulus of elasticity in static bending, static bending, axial compression, splitting and impact bending strengths, have been performed on 15 treated and 15 control associated samples for each species. The standard durability test
on fungi exposed 60 treated and 60 control samples to each fungus.
Results. The results show a decrease in the equilibrium moisture content and an increase in dimensional stability of heattreated wood for the three species studied. The modulus of elasticity, hardness and axial compression strength increase slightly after the heat treatment, while static and impact bending strength and splitting strength may considerably decrease. The fungal durability of oak heartwood and ash increased until class 1, beech and steamed beech until class 3.
Conclusions. The global approach of this study allows a complete and precise characterization of the technological properties of three native hardwood species after heat treatment. New uses of these native species can thus be explored.
Research Center/Unit :
Laboratoire de Technologie du Bois
Disciplines :
Materials science & engineering
Author, co-author :
Ninane, Maxime
Pollet, Caroline
Hebert, Jacques ; Université de Liège - ULiège > Département GxABT > Département GxABT
Jourez, Benoît ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Language :
English
Title :
Physical, mechanical, and decay resistance properties of heat-treated wood by Besson® process of three European hardwood species
Alternative titles :
[fr] Propriétés physiques, mécaniques et de durabilité fongique du bois traité thermiquement selon le procédé Besson® de trois espèces feuillues européennes
Publication date :
19 May 2021
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Volume :
25
Issue :
2
Pages :
129-139
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Service public de Wallonie. Secrétariat général - SPW-SG ULiège. GxABT - Liège Université. Gembloux Agro-Bio Tech
Bhuiyan T., Hirai N. & Sobue N., 2000. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J. Wood Sci., 46(6), 431-436, doi.org/10.1007/bf00765800
Bhuiyan T. & Hirai N., 2005. Study of crystalline behavior of heat-treated wood cellulose during treatments in water. J. Wood Sci., 51, 42-47, doi.org/10.1007/s10086-003-0615-x
Boonstra M.J. & Tjeerdsma B., 2006. Chemical analysis of heat-treated softwoods. Holz Roh Werkst., 64(3), 204-211, doi.org/10.1007/s00107-005-0078-4
Boonstra M.J., Van Acker J., Kegel E. & Stevens M., 2007. Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci. Technol., 41(1), 31-57, doi. org/10.1007/s00226-006-0087-4
Candelier K. et al., 2013. Comparison of chemical composition and decay durability of heat-treated wood cured under different inert atmospheres: nitrogen or vacuum. Polym. Degrad. Stab., 98(2), 677-681, doi. org/10.1016/j.polymdegradstab.2012.10.022
Candelier K. et al., 2016. Control of wood thermal treatment and its effects on decay resistance: a review. Ann. For. Sci., 73(3), 571-583, doi.org/10.1007/s13595-016-0541-x
Candelier K. & Dibdiakova J., 2020. A review on life cycle assessments of thermally modified wood. Holzforschung, 75(3), 199-224, doi.org/10.1515/hf-2020-0102
CEN/TS 15083-1, 2005. Durability of wood and wood-based products. Determination of the natural durability of solid wood against food-destroying fungi, test methods. Basidiomycetes. Brussels: European Committee for Standardization.
CEN/TS 15679, 2008. Thermal modified timber-Definitions and characteristics. Brussels: European Committee for Standardization.
Chanrion P. & Schreiber J., 2002. Bois traité par haute température. Paris: CTBA.
Curling S.F., Clausen C. & Winandy J., 2001. The effect of hemicellulose degradation on the mechanical properties of wood during brown rot decay. IRG/WP, 01–20219. Stockholm: IRG Secretariat.
EN 335, 2013. Durability of wood and wood-based products-Use classes: definitions, application to solid wood and woodbased products. Bruxelles: Bureau de normalisation.
Esteves B.M. & Pereira H.M., 2008. Wood modification by heat treatment: a review. BioResources, 4(1), 370-404, doi.org/10.15376/biores.4.1.370-404
Fengel D. & Wegener G., 1989. Wood: chemistry, ultrastructure, reactions. 2nd ed. Berlin, Germany: Walter De Gruyter Incorporated.
Fojutowski A., Noskowiak A. & Kropacz A., 2009. Physical and mechanical properties and resistance to fungi of scots pine and birch wood modified thermally. Drewno-wood, 52(181), 43-62.
Gérardin P., 2016. New alternatives for wood preservation based on thermal and chemical modification of wood-a review. Ann. For. Sci., 73(3), 559-570, doi.org/10.1007/s13595-015-0531-4
Hakkou M., Pétrissans M., Gérardin P. & Zoulalian A., 2006. Investigations of the reasons for fungal durability of heat-treated beech wood. Polym. Degrad. Stab., 91, 393-397, doi.org/10.1016/j.polymdegradstab.2005.04.042
Hill C.A.S., 2011. Wood modification: chemical, thermal and other processes. Chichester, UK: Wiley.
ISO 3130, 1975. Wood-Determination of moisture content for physical and mechanical tests. Geneva, Switzerland: International Organization for Standardization.
ISO 3131, 1975. Wood-Determination of density for physical and mechanical tests. Geneva, Switzerland: International Organization for Standardization.
ISO 3133, 1975. Wood-Determination of ultimate strength in static bending. Geneva, Switzerland: International Organization for Standardization.
ISO 3348, 1975. Wood-Determination of impact bending strength. Geneva, Switzerland: International Organization for Standardization.
ISO 3349, 1975. Wood-Determination of modulus of elasticity in static bending. Geneva, Switzerland: International Organization for Standardization.
ISO 4858, 1982. Wood-Determination of volumetric shrinkage. Geneva, Switzerland: International Organization for Standardization.
Jones D., Sandberg D., Goli G. & Todaro L., 2019. Wood modification in Europe: a state-of-the-art about processes, products and applications. Firenze, Italy: Firenze University Press, doi.org/10.36253/978-88-6453-970-6
Kamdem D.P., Pizzi A. & Jermannaud A., 2002. Durability of heat-treated wood. Holz Roh Werkst., 60(1), 1-6.
Kasemsiri P., Hiziroglu S. & Rimdusit S., 2012. Characterization of heat treated eastern redcedar (Juniperus virginiana L.). J. Mater. Process. Technol., 212(6), 1324-1330, doi.org/10.1016/j. jmatprotec.2011.12.019
Kocaefe D., Poncsak S. & Boluk Y., 2008. Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. BioResources, 3(2), 517-537.
Kolin B. & Stevanovic T., 1996. The effect of temperature, density and chemical composition upon the limit of hygroscopicity of wood. Holzforschung, 50(3), 263-268, doi.org/10.1515/hfsg.1996.50.3.263
Korkut S., Karayilmazlar S., Hiziroglu S. & Sanli T., 2010. Some of the properties of heat-treated sessile oak (Quercus petraea). For. Prod. J., 60(5), 473-480, doi. org/10.13073/0015-7473-60.5.473
Korkut S. et al., 2012. Effect of thermal modification on the properties of narrow-leaved ash and chestnut. Ind. Crops Prod., 35(1), 287-294, doi.org/10.1016/j. indcrop.2011.07.016
Lawoko M., Henriksson G. & Gellerstedt G., 2006. Characterization of lignin-carbohydrate complexes (LCCs) of spruce wood (Picea abies L.) isolated with two methods. Holzforschung, 60, 156-161, doi.org/10.1515/hf.2006.025 1,
Lekounougou S. & Kocaefe D., 2014. Durability of thermally modified Pinus banksiana (Jack pine) wood against brown and white rot fungi. Int. Wood Prod. J., 5(2), 92-97, doi.org/10.1179/2042645313y.0000000057
Militz H., 2002. Heat treatment of wood: European Processes and their background. Document No. IRG/ WP 02–40241. Cardiff, UK: The International Research Group on Wood Preservation.
Mohebby B. & Sanaei I., 2005. Influences of the hydrothermal treatment on physical properties of beech wood (Fagus orientalis). Document No. IRG/WP 05-40403. Cardiff, UK: The International Research Group on Wood Preservation
Mouras S. et al., 2002. Propriétés physiques de bois peu durables soumis à un traitement de pyrolyse ménagée. Ann. For. Sci., 59, 317-326, doi.org/10.1051/forest:2002027
Neya B., Déon G. & Loubinoux B., 1995. Conséquence de la torréfaction sur la durabilité naturelle du bois de hêtre. Note technique. Bois For. Trop., 244, 67-73.
NF B51-007, 1985. Bois-Essai de compression axiale. Paris: AFNOR.
NF B51-011, 1985. Bois-Essai de fendage. Paris: AFNOR.
NF B51-013, 1985. Bois-Détermination de la dureté Monnin. Paris: AFNOR.
Niemz P., Hofmann T. & Rétfalv T., 2010. Investigation of chemical changes in the structure of thermally modified wood. Maderas Cienc. Tecnol., 12(2), 69-78, doi. org/10.4067/s0718-221x2010000200002
Poncsák S., Kocaefe D., Bouazara M. & Pichette A., 2006. Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Sci. Technol., 40(8), 647-663.
Romagnoli M. et al., 2015. Physical and mechanical characteristics of poor-quality wood after heat treatment. iForest Biogeosc. For., 8, 884-891, doi.org/10.3832/ifor1229-007
Sandberg D.& Kutnar A., 2016. Thermally modified timber: recent developments in Europe and North America. Wood Fiber Sci., 48, 28-39.
Sandberg D., Kutnar A. & Mantanis G., 2017. Wood modification technologies-a review. iForest Biogeosc. For., 10(6), 895-908, doi.org/10.3832/ifor2380-010
Sivonen H. et al., 2002. Magnetic resonance studies of thermally modified wood. Holzforschung, 56, 648-654, doi.org/10.1515/hf.2002.098
Stanzl-Tschegg S., Beikircher W. & Loidl D., 2009. Comparison of mechanical properties of thermally modified wood at growth ring and cell wall level by means of instrumented indentation tests. Holzforschung, 63, 443-448, doi.org/10.1515/hf.2009.085
Stingl R., Smutny R., Treberspurg M. & Teischinger A., 2007. Sustainable use of heat-treated wood as a façade material-Preliminary results of wheathering tests. In: Hill C.A.S., Jones D., Militz H. & Ormondroyd G.A., eds. Proceedings of the Third European Conference on Wood Modification, 15-16 octobre 2007, The Angel Hotel, Cardiff, UK, 195-199.
Tjeerdsma BF., Boonstra M. & Militz H., 1998. Thermal modification of non-durable wood species. 2. Improved wood properties of thermally treated wood. Document No. IRG/WP 98-40124. Cardiff, UK: The International Research Group on Wood Preservation.
Tjeerdsma B.F. & Militz H., 2005. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh Werkst., 63, 102-111.
Welzbacher C.R., Rassam G., Talaei A. & Brischke C., 2011. Microstructure, strength and structural integrity of heat-treated beech and spruce wood. Wood Mater. Sci. Eng., 6, 219-227.
Yildiz S. & Gümüşkaya E., 2007. The effects of thermal modification on crystalline structure of cellulose in soft and hardwood. Building Environ., 42(1), 62-67, doi. org/10.1016/j.buildenv.2005.07.009
Yilgor N., Oner U. & Nami S., 2001. Physical, mechanical and chemical properties of steamed beech wood. For. Prod. J., 51(11-12), 89-93.