Poster (Scientific congresses and symposiums)
Modeling the GCxGC separation as individual subsystems under vacuum outlet conditions: First dimension retention time predictions
Gaida, Meriem; Franchina, Flavio; Focant, Jean-François
202112 Multidimensional Chromatography Workshop
 

Files


Full Text
12 MDCW Abstract.pdf
Publisher postprint (129.84 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Retention time prediction; Thermodynamic modeling; Gas chromatography
Abstract :
[en] In light of the wide applicability of multidimensional GC techniques in the analysis of complex samples, method development and optimization have become more challenging and time-consuming (1). Therefore, a renewed interest in modeling GC separations has sprung. In fact, establishing accurate modeling procedures helps bypass demanding trial and error optimizations, thus significantly decreasing the number of runs preceding the actual chromatographic separation. Typically, the GC×GC run is modeled as a whole complex set. However, in this research, the comprehensive two-dimensional gas chromatography (GC×GC) separation is modeled as individual subsystems in which the primary and secondary columns are treated separately and the cryogenic modulator is considered as a consecutively second injection device. In this scheme, retention times are modeled using two predictive approaches. The first uses the general temperature-programmed retention time (2,3) and the second is based on thermodynamic modeling(4). Both approaches use retention data retrieved from isothermal runs and simulate the temperature-programmed GC runs as series of infinitesimal isothermal time intervals during which both the retention factor and the carrier gas velocity are considered constant. The performance of both approaches is evaluated using several standards and experimental conditions (two modes of gas flow regulation and different temperature programs). While the modeling error is considerably smaller for the thermodynamic model, predictions with both approaches are in good agreement with the experimental data. Additionally, both models provide accurate retention time predictions for different chromatographic conditions. References 1. Prebihalo, S. E.; Berrier, K. L.; Freye, C. E.; Bahaghighat, H. D.; Moore, N. R.; Pinkerton, D. K.; Synovec, R. E. Anal. Chem. 2018, 90, 505–532. 2. Habgood, H. W.; Harris, W. E. Anal. Chem. 1960, 32 (4), 450–453. 3. Calvin Giddings, J. J. Chromatogr. A 1960, 4, 11–20. 4. Karolat, B.; Harynuk, J. J. Chromatogr. A 2010, 1217, 4862–4867.
Disciplines :
Chemistry
Author, co-author :
Gaida, Meriem  ;  Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Franchina, Flavio ;  Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Focant, Jean-François  ;  Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Language :
English
Title :
Modeling the GCxGC separation as individual subsystems under vacuum outlet conditions: First dimension retention time predictions
Alternative titles :
[en] Belgique
Publication date :
02 February 2021
Event name :
12 Multidimensional Chromatography Workshop
Event organizer :
Katelynn Perrault, Pierre-Hugues Stefanuto, ​Dwight Stoll
Event date :
01-02-2021 --> 03-02-2021
Audience :
International
Name of the research project :
Chimic project
Funders :
FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen [BE]
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
Available on ORBi :
since 11 May 2021

Statistics


Number of views
128 (10 by ULiège)
Number of downloads
5 (5 by ULiège)

Bibliography


Similar publications



Contact ORBi