[en] During holographic recording, interference patterns produced by a reference beam and the light waves scattered by the object are stored by building-up of refractive index variations or relief profiles in the photosensitive medium. Early holograms used silver halide photographic emulsions as the recording medium. Being able to memorize an incident complex fringe pattern with small features at the submicrometer scale, different polymeric media are also successfully usable. All this optimizing work generated different applications.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Carré, Christiane; université de Rennes - ENNSAT Lannion > Chimie > UMR Foton
Renotte, Yvon ; Université de Liège - ULiège > Département AGO > Optique - Hololab
Smigielski, Paul; Club CMOI - Société Française d'Optique - université de Strasbourg
Allonas, Xavier; Université de Haute Alsace - Mulhouse > Chimie
Ley, Christian; Université de Haute Alsace - Mulhouse > Chimie
Jradi, Safi; Université de Technologie de Troyes > Physique > Laboratoire de Nanotechnologie et d'instrumentation optique
Language :
French
Title :
L’holographie, une reconstruction par la lumière grâce à un matériau photostructurable
Alternative titles :
[en] Holography, reconstructing by light thanks to a photostructurable medium
Bjelkhagen H., Brotherton-Ratcliffe D., Ultra-realistic imaging: advanced techniques in analogue and digital colour holography, CRC Press, 2013.
www.ultimate-holography.com
Belloni J., Mostafavi M., Les agrégats, précurseurs des nanoparticules, L'Act. Chim., 2011, 348-349, p. 13.
Belloni J., Treguer M., Remita H., De Keyzer R., Enhanced yield of photoinduced electrons in doped silver halide crystals, Nature, 1999, 402, p. 865.
Bolte M., Israeli Y., Djouani F., Rivaton A., Frezet L., Lessard R.A., Hologram formation reconsidered in dichromated polyvinylalcohol: polymer cross-linking around chromium (V), Proc. of SPIE (Practical Holography XIX: Materials and Applications), 2005, 5742, p. 195.
Reiser A., Huang J.P., He X., Yeh T.F., Jha S., Shih H.Y., Kim M.S., Han Y.K., Yan K., The molecular mechanism of novolak-diazonaphthoquinone resists, Eur. Polym. J., 2002, 38, p. 619.
Saxby G., Manual of Practical Holography, Focal Press, 1991, p. 163.
Guo J., Gleeson M.R., Sheridan J.T., A review of the optimization of photopolymer materials for holographic data storage, Phys. Research Int., 2012, ID 803439.
Ibrahim A., Ley C., Allonas X., Carré C., Pillin I., Tailoring 3-component photoinitiating systems for use as efficient photopolymerizable holographic material, J. Display Technol., 2014, 10, p. 456.
Carré C., Chevallier R., Mailhot B., Rivaton A., Understanding microstructure development in holographic polymer-dispersed liquid crystals, in Basics and Applications of Photopolymerization Reactions, J.P. Fouassier, X. Allonas (eds), Research Signpost, 2010, vol. 3, p. 175.
www.lynx-us.com et www.polygrama.com
www.hologram-industries.com/fr
Kessels M.V., El Bouz M., Pagan R., Heggarty K., Versatile stepper based maskless microlithography using a liquid crystal display for direct write of binary and multilevel microstructures, J. Micro/Nanolithography, MEMS, and MOEMS, 2007, 6, p. 33002.
Chan Yong A., Heggarty K., Carré C., Battarel D., Rapid prototyping of diffractive optical elements in microstructured sol-gel hybrid material, Proc. 2nd EOS Conf. Manufacturing of Optical Components, 2011, art. 4376.
Smigielski P., Holographie optique - Interférométrie holographique, Techniques de l'Ingénieur, 2001, R 6330, p. 1.
Blain P., Michel F., Piron P., Renotte Y., Habraken S., Combining shearography and interferometric fringe projection in a single device for complete control of industrial applications, Optical Engineering, 2013, 52, p. 0841021.