This is the peer reviewed version of the following article: Coca‐Salazar, A, Cornelis, J‐T, Carnol, M. Soil properties and microbial processes in response to land‐use change in agricultural highlands of the Central Andes. Eur J Soil Sci. 2021; 1– 16. , which has been published in final form at https://doi.org/10.1111/ejss.13110. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
All documents in ORBi are protected by a user license.
Bolivia; Eucalyptus globulus; hot water extractable carbon; microbial activity; microbial biomass; Solanum tuberosum
Abstract :
[en] Abstract Understanding changes in soil functions in response to land-use change is important for guiding agricultural practices towards sustainable soil management. We evaluated the differences in soil properties (soil organic matter, water extractable carbon (C) and nitrogen (N), microbial biomass, pHKCL and exchangeable cations) and microbial processes (respiration potential, net N mineralization, net nitrification and metabolic potential of soil bacteria), as well as the relative importance of soil properties in explaining changes in processes under three land uses (potato crops, fallow fields and eucalyptus plantations) in the agricultural highlands of the Central Andes. Soils under potato crops were characterized by the highest net N mineralization and net nitrification rates, and extractable phophorus (P), and the lowest microbial biomass P. Conversion to eucalyptus plantations led to an increase in soil organic matter, water extractable C and microbial biomass, and a decrease in extractable P and metabolic diversity of soil bacteria. Higher exchangeable aluminium (Al) indicated soil acidification under eucalyptus. Fallow practices did not lead to major changes in soil properties and microbial processes, indicating that fallow practices for up to 6 years were too short to substantially contribute to soil fertility restoration. Hot water extractable carbon (HWC) showed the best relationship with soil processes (respiration potential, net N mineralization and net nitrification). Our results highlight the necessity of alternative management practices for maintaining soil fertility under potato crops, the drastic modification of soil properties and processes under eucalyptus plantations, and the potential of HWC as a proxy for monitoring land-use-induced changes in soil functions related to C and N cycling. Highlights Effects of conversion from potato crops to eucalyptus and fallow on soil properties and processes were assessed. Under eucalyptus, soil respiration increased; metabolic diversity and N transformations decreased. Short fallow periods did not result in soil fertility restoration. Hot water extractable C was the best indicator of changes in soil processes.
Achbergerová, L., & Nahálka, J. (2011). Polyphosphate - An ancient energy source and active metabolic regulator. Microbial Cell Factories, 10(63), 1–14. https://doi.org/10.1186/1475-2859-10-63
Allen, S. E. (1989). Chemical analysis of ecological materials (2nd ed.). Oxford: Blackwell Scientific Publications.
Alvarez-Sánchez, E., Etchevers, J. D., Ortiz, J., Núñez, R., Volke, V., Tijerina, L., & Martínez, A. (1999). Biomass production and phosphorus accumulation of potato as affected by phosphorus nutrition. Journal of Plant Nutrition, 22(1), 205–217. https://doi.org/10.1080/01904169909365618
Anderson, J. P., & Domsch, K. H. (1980). Quantities of plant nutrients in the microbial biomass of selected soils. Soil Science, 130(4), 211–216. https://doi.org/10.1097/00010694-198010000-00008
Anderson, T. H. (2003). Microbial eco-physiological indicators to asses soil quality. Agriculture, Ecosystems and Environment, 98, 285–293. https://doi.org/10.1016/S0167-8809(03)00088-4
Anderson, T. H., & Domsch, K. H. (1989). Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry, 21(4), 471–479. https://doi.org/10.1016/0038-0717(89)90117-X
Anderson, T. H., & Domsch, K. H. (1990). Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry, 22(2), 251–255. https://doi.org/10.1016/0038-0717(90)90094-g
Bai, S. H., & Blumfield, T. J. (2015). Do young trees contribute to soil labile carbon and nitrogen recovery ? Journal of Soils and Sediments, 15, 503–509. https://doi.org/10.1007/s11368-014-1028-8
Barros Soares, E. M., da Silva, R., Nogueira De Sousa, R., De Almeida, A. V., & Ribeiro da Silva, I. (2019). Soil organic matter fractions under eucalypt plantation in reform management. Floresta e Ambiente, 26(2), 1–10. https://doi.org/10.1590/2179-8087.069417
Barton, K. (2018). MuMIn: Multi-model inference. https://cran.r-project.org/package=MuMIn.
Beheshti, A., Raiesi, F., & Golchin, A. (2012). Soil properties, C fractions and their dynamics in land use conversion from native forests to croplands in northern Iran. Agriculture, Ecosystems and Environment, 148, 121–133. https://doi.org/10.1016/j.agee.2011.12.001
Bouyoucos, G. J. (1927). The hydrometer as a new method for the mechanical analysis of soils. Soil Science, 23(5), 343–353.
Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), 837–842. https://doi.org/10.1016/0038-0717(85)90144-0
Brookes, P. C., Powlson, D. S., & Jenkinson, D. S. (1984). Phosphorus in the soil microbial biomass. Soil Biology and Biochemistry, 16(2), 169–175. https://doi.org/10.1016/0038-0717(84)90108-1
Brookes, P. C., Powlson, D. S. S., & Jenkinson, D. S. S. (1982). Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry, 14(4), 319–329. https://doi.org/10.1016/0038-0717(82)90001-3
Brussaard, L. (2012). Ecosystem services provided by the soil biota. In D. H. Wall, R. D. Bardgett, V. Behan-Pelletier, J. E. Herrick, T. H. Jones, K. Ritz, et al. (Eds.), Soil ecology and ecosystem services (issue 1995). Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199575923.001.0001
Bucher, M. (2006). Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist, 173, 11–26. https://doi.org/10.1111/j.1469-8137.2006.01935.x
Cai, Y. F., Barber, P., Dell, B., O'Brien, P., Williams, N., Bowen, B., & Hardy, G. (2010). Soil bacterial functional diversity is associated with the decline of Eucalyptus gomphocephala. Forest Ecology and Management, 260(6), 1047–1057. https://doi.org/10.1016/j.foreco.2010.06.029
Carter, M. R., & Rennie, D. A. (1982). Changes in soil quality under zero tillage farming systems: Distribution of microbial biomass and mineralizable C and N potentials. Canadian Journal of Soil Science, 62, 587–597. https://doi.org/10.4141/cjss82-066
Castro, H. E. (2005). Balance y prospectiva de la investigación en el campo de la fertilización para el sistema de producción de papa en Colombia. In CEVIPAPA (Ed.), I Taller nacional sobre suelos, fisiología y nutricion vegetal en el cultivo de papa (pp. 31–44). Bogotá: CEVIPAPA.
Cermelli, C., Fabio, A., Fabio, G., & Quaglio, P. (2008). Effect of eucalyptus essential oil on respiratory bacteria and viruses. Current Microbiology, 56(1), 89–92. https://doi.org/10.1007/s00284-007-9045-0
Chantigny, M. H. (2003). Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practices. Geoderma, 113, 357–380. https://doi.org/10.1016/S0016-7061(02)00370-1
Chen, F., Zheng, H., Zhang, K., Ouyang, Z., Wu, Y., Shi, Q., & Li, H. (2013). Non-linear impacts of Eucalyptus plantation stand age on soil microbial metabolic diversity. Journal of Soils and Sediments, 13(5), 887–894. https://doi.org/10.1007/s11368-013-0669-3
Cleveland, C. C., & Liptzin, D. (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85(3), 235–252. https://doi.org/10.1007/s10533-007-9132-0
Colman, B. P., & Schimel, J. P. (2013). Drivers of microbial respiration and net N mineralization at the continental scale. Soil Biology and Biochemistry, 60, 65–76. https://doi.org/10.1016/j.soilbio.2013.01.003
Condori, B., Devaux, A., & Mamani, P. (1997). Efecto residual de la fertilización del cultivo de papa sobre el cultivo de haba (Vicia faba L.) en el sistema de rotación. Revista Latinoamericana de La Papa, 9(10), 171–187.
Cookson, W. R., Osman, M., Marschner, P., Abaye, D. A., Clark, I., Murphy, D. V., … Watson, C. A. (2007). Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biology & Biochemistry, 39, 744–756. https://doi.org/10.1016/j.soibio.2006.09.022
Coûteaux, M. M., Hervé, D., & Mita, V. (2008). Carbon and nitrogen dynamics of potato residues and sheep dung in a two-year rotation cultivation in the Bolivian Altiplano. Communications in Soil Science and Plant Analysis, 39, 475–798. https://doi.org/10.1080/00103620701826621
Curtin, D., Wright, C. E., Beare, M. H., & Mccallum, F. M. (2006). Hot water-extractable nitrogen as an indicator of soil nitrogen availability. Soil Science Society of America Journal, 70, 1512–1521. https://doi.org/10.2136/sssaj2005.0338
D'Acunto, L., Andrade, J. F., Poggio, S. L., & Semmartin, M. (2018). Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community. Agriculture, Ecosystems and Environment, 257, 159–164. https://doi.org/10.1016/j.agee.2018.02.011
Ellis-Jones, J., & Mason, T. (1999). Livelihood strategies and assets of small farmers in the evaluation of soil and water management practices in the temperate inter-andean valleys of Bolivia. Mountain Research and Development, 19(3), 221–234.
FAO (1999). Bolivia hacia una estrategia de fertilizantes. In Informe preparado para el Gobierno de Bolivia, por el Proyecto Manejo de Suelos y Nutrición Vegetal en Sistemas de Cultivos GCPF/BOL/018/NET – “Fertisuelos” (p. 41). Rome: Organización de las Naciones Unidas para la Agricultural y la Alimentación.
FAO, & ITPS. (2015). Status of the world's soil resources (SWSR) - Main report, Rome: Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils.
Faria, J. C., Jelihovschi, E. G., & Allaman, I. B. (2018). Conventional Tukey test. https://github.com/jcfaria/TukeyC
Fox, J., & Weisger, S. (2011). An {R} companion to applied regression (2nd ed.). New Brunswick: SAGE Publications, Inc. Retrieved from http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
Garland, J. L. (1996). Analytical approaches to the characterization using patterns of potential C source utilization. Soil Biology and Biochemistry, 28(2), 213–221. https://doi.org/10.1016/0038-0717(95)00112-3
Garland, J. L. (1997). Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiology Ecology, 24, 289–300. https://doi.org/10.1111/j.1574-6941.1997.tb00446.x
Garland, J. L., & Mills, A. L. (1991). Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology, 57, 2351–2359. https://doi.org/10.1128/AEM.57.8.2351-2359.1991
Ghani, A., Dexter, M., & Perrott, K. W. (2003). Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biology and Biochemistry, 35(9), 1231–1243. https://doi.org/10.1016/S0038-0717(03)00186-X
Graves, S., Piepho, H.-P., & Selzer, L. (2015). Visualizations of paired comparisons. https://CRAN.R-project.org/package=multcompView
Gregorich, E. G., Beare, M. H., Stoklas, U., & St-Georges, P. (2003). Biodegradability of soluble organic matter in maize-cropped soils. Geoderma, 113(3–4), 237–252. https://doi.org/10.1016/S0016-7061(02)00363-4
Greiner, L., Keller, A., Grêt-regamey, A., & Papritz, A. (2017). Soil function assessment: Review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy, 69(May), 224–237. https://doi.org/10.1016/j.landusepol.2017.06.025
Haines-Young, R., & Potschin, M. (2008). England's terrestrial ecosystem services and the rationale for and ecosystem approach, Full technical report. Nottingham: DEFRA Project.
Hart, S. C., Nason, G. E., Myrold, D. D., & Perry, D. A. (1994). Dynamics of gross nitrogen transformations in an old-growth forest: The carbon connection. Ecology, 75(4), 880–891. https://doi.org/10.2307/1939413
Hartman, W. H., & Richardson, C. J. (2013). Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2): Is there a biological stoichiometry of soil microbes? PLoS One, 8(3), 1–14. https://doi.org/10.1371/journal.pone.0057127
Haynes, R. (2005). Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Advances in Agronomy, 85, 221–268. https://doi.org/10.1016/S0065-2113(04)85005-3
Hendershot, W. H., & Duquette, M. (1986). A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Science Society of America Journal, 50, 605–608. https://doi.org/10.2136/sssaj1986.03615995005000030013x
Hepperly, P., Lotter, D., Ulsh, C. Z., Seidel, R., & Reider, C. (2009). Compost, manure and synthetic fertilizer influences crop yields, soil properties, nitrate leaching and crop nutrient content. Compost Science & Utilization, 17(2), 117–126. https://doi.org/10.1080/1065657X.2009.10702410
Heuck, C., Weig, A., & Spohn, M. (2015). Soil microbial biomass C: N: P stoichiometry and microbial use of organic phosphorus. Soil Biology and Biochemistry, 85, 119–129. https://doi.org/10.1016/j.soilbio.2015.02.029
Horta, M. D. C., & Torrent, J. (2007). The Olsen P method as an agronomic and environmental test for predicting phosphate release from acid soils. Nutrient Cycling in Agroecosystems, 77(3), 283–292. https://doi.org/10.1007/s10705-006-9066-2
Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346–363. http://doi.org/10.1002/bimj.200810425.
INE. (2015). Censo agropecuario 2013 Cochabamba. (Vol. 360). La Paz: Instituto Nacional de Estadística.
Insam, H., & Goberna, M. (2004). Use of biolog for the community level physiological profiling (CLPP) of environmental samples. In G. A. Kowalchuk, F. J. de Bruijn, I. M. Head, A. D. L. Akkermans, & J. D. van Elsas (Eds.), Molecular microbial ecology manual (pp. 853–860). Netherlands: Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4020-2177-0_401
Islam, K. R., & Weil, R. R. (2000). Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture, Ecosystems and Environment, 79, 9–16. https://doi.org/10.1016/S0167-8809(99)00145-0
Jaeger, B. C., Edwards, L. J., Das, K., & Sen, P. K. (2016). An R statistic for fixed effects in the generalized linear mixed model. Journal of Applied Statistics, 44(6), 1086–1105. https://doi.org/10.1080/02664763.2016.1193725
Jaleta, D., Mbilinyi, B. P., Mahoo, H. F., & Lemenih, M. (2017). Effect of eucalyptus expansion on surface runoff in the central highlands of Ethiopia. Ecological Processes, 6, 1–8. https://doi.org/10.1186/s13717-017-0071-y
Jenkinson, D. S., & Powlson, D. S. (1976). The effects of biocidal treatments on metabolism in soil -V: A method for measuring soil biomass. Soil Biology and Biochemistry, 8, 209–2013. https://doi.org/10.1016/0038-0717(76)90005-5
Joergensen, R. G. (1996). The fumigation-extraction method to estimate soil microbial biomass: Calibration of the k ec value. Soil Biology and Biochemistry, 28(1), 25–31. https://doi.org/10.1016/0038-0717(95)00102-6
Joergensen, R. G. (2010). Organic matter and microorganisms in tropical soils. In P. Dion (Ed.), Soil biology and agriculture in the tropics (pp. 17–44). Berlin, Heidelberg: Springer-Verlag.
Juan, L. I., Yan-ting, L. I., Xiang-dong, Y., Jian-jun, Z., Zhi-an, L. I. N., & Bing-qiang, Z. (2015). Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil. Journal of Integrative Agriculture, 14(12), 2500–2511. https://doi.org/10.1016/S2095-3119(15)61229-1
Kassambara, A., & Mundt, F. (2019). Factoextra: Extract and visualize the results of multivariate data analyses. https://cran.r-project.org/package=factoextra
Kessler, C. A., & Stroosnijder, L. (2006). Land degradation assessment by farmers in Bolivian mountain valleys. Land Degradation and Development, 17(3), 235–248. https://doi.org/10.1002/ldr.699
Kinraide, T. B. (1991). Identity of the Rhizotoxic aluminum species. Plant and Soil, 134(1), 167–178. https://doi.org/10.1007/BF00010729
Kretzschmar, R. M., Hafner, H., Bationo, A., & Marschner, H. (1991). Long- and short-term effects of crop residues on aluminum toxicity, phosphorus availability and growth of pearl millet in an acid sandy soil. Plant and Soil, 136, 215–223. https://doi.org/10.1007/BF02150052
Kumar, P., Mishra, A. K., Chaudhari, S. K., & Basak, N. (2018). Carbon pools and nutrient dynamics under eucalyptus-based agroforestry system in semi-arid region of north-West India. Journal of the Indian Society of Soil Science, 66(2), 188–199. https://doi.org/10.5958/0974-0228.2018.00024.5
Kunito, T., Isomura, I., Sumi, H., Park, H., Toda, H., Otsuka, S., … Senoo, K. (2016). Aluminum and acidity suppress microbial activity and biomass in acidic forest soils. Soil Biology and Biochemistry, 97, 23–30. https://doi.org/10.1016/j.soilbio.2016.02.019
Lambers, H., Raven, J. A., Shaver, G. R., & Smith, S. E. (2007). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 23(2), 95–103. https://doi.org/10.1016/j.tree.2007.10.008
Landgraf, D. (2001). Dynamics of microbial biomass in Cambisols under a three year succession fallow in north eastern Saxony. Journal of Plant Nutrition and Soil Science, 164(6), 665–671. https://doi.org/10.1002/1522-2624(200112)164:6<665::AID-JPLN665>3.0.CO;2-N
Landgraf, D., Leinweber, P., & Makeschin, F. (2006). Cold and hot water – Extractable organic matter as indicators of litter decomposition in forest soils. Journal of Plant Nutrition and Soil Science, 169, 76–82. https://doi.org/10.1002/jpln.200521711
Leite, F. P., Silva, I. R., Ferreira, R., de Barros, N. F., & Lima, J. C. (2010). Alterations of soil chemical properties by eucalyputs cultivation in five regions in the Rio Doce Valley. Revista Brasileira de Ciência Do Solo, 34(1), 821–831. https://doi.org/10.1590/S0100-06832010000300024
Li, Z. A., Peng, S. L., Rae, D. J., & Zhou, G. Y. (2001). Litter decomposition and nitrogen mineralization of soils in subtropical plantation forests of southern China, with special attention to comparisons between legumes and non-legumes. Plant and Soil, 229(1), 105–116. https://doi.org/10.1023/A:1004832013143
Malchair, S., & Carnol, M. (2009). Microbial biomass and C and N transformations in forest floors under European beech, sessile oak, Norway spruce and Douglas-fir at four temperate forest sites. Soil Biology and Biochemistry, 41(4), 831–839. https://doi.org/10.1016/j.soilbio.2009.02.004
Mangiafico, S. S. (2015). An R companion for the handbook of biological statistics. New Brunswick: Rutgers Cooperative Extension.
McKean, S. J. (1993). Manual de analisis de suelos y tejido vegetal: Una guia teórica y práctica de metodologias. Cali: Centro Internacional de Agricultura Tropical (CIAT).
Meinl, T., Sattolo, S., Mariano, E., Nastaro, B., & Otto, R. (2017). Soil carbon and nitrogen dynamics as affected by land use change and successive nitrogen fertilization of sugarcane. Agriculture, Ecosystems and Environment, 247(October 2016), 63–74. https://doi.org/10.1016/j.agee.2017.06.005
Ministerio de Medio Ambiente y Agua (2014). In V. d. R. H. y. Riego (Ed.), Atlas Cuenca del Rio Grande. La Paz: Ministerio de Medio Ambiente y Agua.
Morales, M., & Patiño, A. (2008). Experiencias de forestación y reforestación en zonas andinas de Bolivia. La Paz: Cooperación Nacional Boliviana del Programa ECOBONA-Intercooperación.
Muscolo, A., Panuccio, M. R., Mallamaci, C., & Sidari, M. (2014). Biological indicators to assess short-term soil quality changes in forest ecosystems. Ecological Indicators, 45, 416–423. https://doi.org/10.1016/j.ecolind.2014.04.047
Muscolo, A., Settineri, G., & Attinà, E. (2015). Early warning indicators of changes in soil ecosystem functioning. Ecological Indicators, 48, 542–549. https://doi.org/10.1016/j.ecolind.2014.09.017
Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4, 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x
Navarro, G., & Maldonado, M. (2002). Geografía Ecológica de Bolivia - Vegetación y Ambientes Acuáticos. Cochabamba: Patiño, Simón I.
Paolini Gómez, J. E. (2018). Microbial activity and microbial biomass in coffee soils of the Venezuelan Andes. Terra LatinoAmericana, 36(1), 13–22.
Patiño, A. (2014). Manual para plantaciones forestales en la zona andina de Bolivia. La Paz: HELVETAS Swiss Intercooperation.
Pestalozzi, H. (2000). Sectoral fallow systems and management of soil fertility: The rationality of indigenous knowledge in the high Andes of Bolivia. Mountain Research and Development, 20(1), 64–71. https://doi.org/10.1659/0276-4741(2000)020[0064:SFSATM]2.0.CO;2
Pijnenborg, J. (1998). Diez años de rhizobiología en Bolivia. Cochabamba: Proyecto Rhizobiología Bolivia.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., & Van Willigen, B. (2018). Nlme: Linear and nonlinear mixed effects models. https://CRAN.R-project.org/package=nlme
Preston-Mafham, J., Boddy, L., & Randerson, P. F. (2002). Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles - A critique. FEMS Microbiology Ecology, 42(1), 1–14. https://doi.org/10.1016/S0168-6496(02)00324-0
Prosser, I. P., Hailes, K. J., Melville, M. D., Avery, R. P., & Slade, C. J. (1993). A comparison of soil acidification and aluminium under eucalyptus forest and unimproved pasture. Australian Journal of Soil Research, 31(3), 245–254. https://doi.org/10.1071/SR9930245
R Core Team. (2018). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Robarge, W. P., & Corey, R. B. (1979). Adsorption of phosphate by hydroxy-aluminum species on a cation exchange resin. Soil Science Society of America Journal, 43, 481–487. https://doi.org/10.2136/sssaj1979.03615995004300030011x
Robertson, G. P., Wedin, D., Groffman, P. M., Blair, J. M., Holland, E. A., Nadelhoffer, K. J., & Harris, D. (1999). Soil carbon and nitrogen availability: Nitrogen mineralization, nitrification, and soil respiration potential. In G. P. Robertson, D. C. Coleman, C. S. Bledsoe, & P. Sollins (Eds.), Standard soil methods for long-term ecological research (pp. 258–271). Oxford: Oxford University Press.
Sarmiento, L., & Bottner, P. (2002). Carbon and nitrogen dynamics in two soils with different fallow times in the high tropical Andes: Indications for fertility restoration. Applied Soil Ecology, 19, 79–89. https://doi.org/10.1016/S0929-1393(01)00178-0
SENAMHI. (2016). Servicio Nacional de Meteorología e Hidrología - Estado Plurinacional de Bolivia. Retrieved from http://www.senamhi.gob.bo/web/public/
Sivila, R. d. C., & Angulo, W. (2006). Efecto del descanso agrícola sobre la microbiota del suelo (Patarani - Altiplano Central boliviano). Ecología En Bolivia, 41(3), 103–115.
Sivila, R. d. C., & Hervé, D. (1994). El estado microbiologico del suelo, indicador de una restauracion de la fertilidad. In Dinámicas del descanso de la tierra en los Andes (pp. 185–197). La Paz: ORSTOM - IBTA.
Stenberg, B. (1999). Monitoring soil quality of arable land: Microbiological indicators. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 49(1), 1–24. https://doi.org/10.1080/09064719950135669
Strickland, M. S., & Rousk, J. (2010). Considering fungal:bacterial dominance in soils - Methods, controls, and ecosystem implications. Soil Biology and Biochemistry, 42(9), 1385–1395. https://doi.org/10.1016/j.soilbio.2010.05.007
Styger, E., & Fernandes, E. (2006). Contributions of managed fallows to soil fertility recovery. In N. Uphoff, A. S. Ball, E. Fernandes, H. Herren, O. Husson, M. Laing, C. Palm, J. Pretty, P. Sanchez, N. Sanginga & J. Thies, (eds). Biological approaches to sustainable soil systems (pp. 425–437). Boca Raton. https://doi.org/10.1201/9781420017113.ch29
Szott, L. T., & Palm, C. A. (1996). Nutrient stocks in managed and natural humid tropical fallows. Plant and Soil, 186(2), 293–309. https://doi.org/10.1007/BF02415525
Templer, P., Findlay, S., & Lovett, G. (2003). Soil microbial biomass and nitrogen transformations among five tree species of the Catskill Mountains, New York, USA. Soil Biology and Biochemistry, 35, 607–613. https://doi.org/10.1016/S0038-0717(03)00006-3
Thirukkumaran, C. M., & Parkinson, D. (1999). Microbial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers. Soil Biology and Biochemistry, 32, 59–66. https://doi.org/10.1016/S0038-0717(99)00129-7
Tietema, A., Warmerdam, B., Lenting, E., & Riemer, L. (1992). Abiotic factors regulating nitrogen transformations in the organic layer of acid forest soils: Moisture and pH. Plant and Soil, 147, 69–78. https://doi.org/10.1007/BF00009372
van Leeuwen, J. P., Djukic, I., Bloem, J., Lehtinen, T., & Hemerik, L. (2017). Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain. European Journal of Soil Biology, 79, 14–20. https://doi.org/10.1016/j.ejsobi.2017.02.001
Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6), 703–707. https://doi.org/10.1016/0038-0717(87)90052-6
Wakelin, S. A., Macdonald, L. M., Rogers, S. L., Gregg, A. L., Bolger, T. P., & Baldock, J. A. (2008). Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biology and Biochemistry, 40, 803–813. https://doi.org/10.1016/j.soilbio.2007.10.015
Wang, Q., Xiao, F., Zhang, F., & Wang, S. (2013). Labile soil organic carbon and microbial activity in three subtropical plantations. Forestry, 86, 569–574. https://doi.org/10.1093/forestry/cpt024
Wang, W. J., Dalal, R. C., Moody, P. W., & Smith, C. J. (2003). Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biology and Biochemistry, 35, 273–284. https://doi.org/10.1016/S0038-0717(02)00274-2
Willey, J., Sherwood, L., & Woolverton, C. J. (2017). Prescott's microbiology. Langara College. (Vol. 10), New York: McGraw-Hill.
Wood, S. N. (2017). Generalized additive models: An introduction with R (2nd edition). Journal of Statistical Software, 86, 1–5. https://doi.org/10.18637/jss.v086.b01
Wurst, S., De Deyn, G., & Orwin, K. (2012). Soil biodiversity and functions. In D. H. Wall, R. D. Bardgett, V. Behan-Pelletier, J. E. Herrick, T. H. Jones, K. Ritz, et al. (Eds.), Soil ecology and ecosystem services. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199575923.001.0001
Zak, J. C., Willig, M. R., Moorhead, D. L., & Wildman, H. G. (1994). Functional diversity of microbial communities: A quantitative approach. Soil Biology and Biochemistry, 26(9), 1101–1108. https://doi.org/10.1016/0038-0717(94)90131-7
Zhang, C., & Fu, S. (2010). Allelopathic effects of leaf litter and live roots exudates of Eucalyptus species on crops. Allelopathy Journal, 26(1), 91–100.
Zhang, X., Wang, Q., Li, L., & Han, X. (2008). Seasonal variations in nitrogen mineralization under three land use types in a grassland landscape. Acta Oecologica, 34(3), 322–330. https://doi.org/10.1016/j.actao.2008.06.004
Zimmerer, K. S. (1993). Soil erosion and social (Dis) courses in Cochabamba, Bolivia: Perceiving the nature of environmental degradation. Economic Geography, 69(3), 312–327. https://doi.org/10.2307/143453