[en] Common allometric patterns have been reported across the tropics and good performance on independent data was retrieved for the most recent pantropical model predicting tree aboveground biomass (AGB) from stem diameter, wood density and total height. General models are undoubtedly useful for the estimation and monitoring of biomass and carbon stocks in tropical forests, however specific allometry, allocation, and traits, are at the core of many models of vegetation dynamics, and there is lack of such information for some regions and species. In this study, we specifically evaluated how size-dependent changes in above-ground biomass and biomass allocation to crown relate to other allometric and life-history traits for tropical tree species. We gathered destructive data available in eight terra firme forest sites across central Africa and the combined dataset consisted of 1,023 trees belonging to 54 tropical tree species phylogenetically dispersed, with only two congeneric species.
A huge body of field and laboratory measurements was used for computing AGB and crown mass ratio (CMR) at the tree level, and to derive key allometric traits at the species level. For the latter, species-specific relationships between tree diameter and total height, crown exposure to light, wood density, and bark thickness were fitted for 50 species. Our results show interspecific variation in the relationships relating tree diameter to both AGB and CMR, and including species traits in a multi-specific AGB model confirmed that interspecific variation in biomass allometry is primarily determined by species wood density. We also showed that the allocation of biomass to crown increases linearly with tree diameter for most species, and that interspecific variation in the CMR model is associated with the species dispersal mode and maximum height. Trait covariations among our set of tropical tree species widespread and/or locally abundant in central Africa, revealed a continuum between large-statured species, which tended to be light-demanding, deciduous and wind-dispersed, and species with opposite attributes. Information on allometry, allocation, and traits provided here could further be used in comparative ecology and for parameterizing dynamic and succession models. Also importantly, the species-specific AGB models fitted for major tree species, including most timber species of central Africa, will help improve biomass estimates.
Basuki, T.M., Van Laake, P.E., Skidmore, A.K., Hussin, Y.A., Allometric equations for estimating the above-ground biomass in tropical lowland< i> Dipterocarp forests. For. Ecol. Manag. 257 (2009), 1684–1694.
Brown, S., Gillespie, A.J.R., Lugo, A.E., Biomass estimation methods for tropical forests with applications to forest inventory data. For. Sci. 35 (1989), 881–902.
Chave, J., Andalo, C., Brown, S., Cairns, M., Chambers, J., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145 (2005), 87–99.
Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., Perez, R., Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359 (2004), 409–420.
Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum. Ecol. Lett. 12 (2009), 351–366.
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C.M., Saldarriaga, J.G., Vieilledent, G., Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20 (2014), 3177–3190, 10.1111/gcb.12629.
Fayolle, A., Doucet, J.-L., Gillet, J.-F., Bourland, N., Lejeune, P., Tree allometry in Central Africa: Testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. For. Ecol. Manag. 305 (2013), 29–37, 10.1016/j.foreco.2013.05.036.
Fayolle, A., Loubota Panzou, G.J., Drouet, T., Swaine, M.D., Bauwens, S., Vleminckx, J., Biwole, A., Lejeune, P., Doucet, J.-L., Taller trees, denser stands and greater biomass in semi-deciduous than in evergreen lowland central African forests. For. Ecol. Manag. 374 (2016), 42–50, 10.1016/j.foreco.2016.04.033.
Fayolle, A., Ngomanda, A., Mbasi, M., Barbier, N., Bocko, Y., Boyemba, F., Couteron, P., Fonton, N., Kamdem, N., Katembo, J., Kondaoule, H.J., Loumeto, J., Maïdou, H.M., Mankou, G., Mengui, T., Mofack, G.I., Moundounga, C., Moundounga, Q., Nguimbous, L., Nsue Nchama, N., Obiang, D., Ondo Meye Asue, F., Picard, N., Rossi, V., Senguela, Y.-P., Sonké, B., Viard, L., Yongo, O.D., Zapfack, L., Medjibe, V.P., 2018. A regional allometry for the Congo basin forests based on the largest ever destructive sampling. For. Ecol. Manag. 430, 228–240. https://doi.org/10.1016/j.foreco.2018.07.030.
Fayolle, A., Swaine, M.D., Bastin, J.-F., Bourland, N., Comiskey, J.A., Dauby, G., Doucet, J.-L., Gillet, J.-F., Gourlet-Fleury, S., Hardy, O.J., Kirunda, B., Kouamé, F.N., Plumptre, A.J., Patterns of tree species composition across tropical African forests. J. Biogeogr. 41 (2014), 2320–2331, 10.1111/jbi.12382.
Feldpausch, T.R., Banin, L., Phillips, O.L., Baker, T.R., Lewis, S.L., Quesada, C.A., Affum-Baffoe, K., Arets, E., Berry, N.J., Bird, M., Height-diameter allometry of tropical forest trees. Biogeosciences 8 (2011), 1081–1106.
Fick, S.E., Hijmans, R.J., WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37 (2017), 4302–4315.
Fisher, R.A., Koven, C.D., Anderegg, W.R., Christoffersen, B.O., Dietze, M.C., Farrior, C.E., Holm, J.A., Hurtt, G.C., Knox, R.G., Lawrence, P.J., Vegetation demographics in Earth System Models: A review of progress and priorities. Glob. Change Biol. 24 (2018), 35–54.
Gibbs, H.K., Brown, S., Niles, J.O., Foley, J.A., Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett., 2, 2007, 045023.
Gillet, J.-F., Doucet, J.-L., A commented checklist of woody plants in the Northern Republic of Congo. Plant Ecol. Evol. 145 (2012), 258–271.
Goodman, R.C., Phillips, O.L., Baker, T.R., The importance of crown dimensions to improve tropical tree biomass estimates. Ecol. Appl. 24 (2014), 680–698.
Guan, K., Pan, M., Li, H., Wolf, A., Wu, J., Medvigy, D., Caylor, K.K., Sheffield, J., Wood, E.F., Malhi, Y., Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8 (2015), 284–289.
Hawthorne, W.D., 1995. Ecological profiles of Ghanaian forest trees, Tropical Forestry Papers. Oxford Forestry Institute, Department of Plant Sciences, University of Oxford, Oxford.
Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E., 2008. Hole-filled SRTM for the globe Version 4. Available CGIAR-SXI SRTM 90m Database Httpsrtm Csi Cgiar Org.
Jucker, T., Bouriaud, O., Avacaritei, D., Dănilă, I., Duduman, G., Valladares, F., Coomes, D.A., Competition for light and water play contrasting roles in driving diversity–productivity relationships in Iberian forests. J. Ecol. 102 (2014), 1202–1213.
Jucker, T., Caspersen, J., Chave, J., Antin, C., Barbier, N., Bongers, F., Dalponte, M., van Ewijk, K.Y., Forrester, D.I., Haeni, M., Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob. Change Biol. 23 (2017), 177–190.
Kearsley, E., de Haulleville, T., Hufkens, K., Kidimbu, A., Toirambe, B., Baert, G., Huygens, D., Kebede, Y., Defourny, P., Bogaert, J., Beeckman, H., Steppe, K., Boeckx, P., Verbeeck, H., Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nat. Commun., 4, 2013, 10.1038/ncomms3269.
Ketterings, Q.M., Coe, R., van Noordwijk, M., Ambagau, Y., Palm, C.A., Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For. Ecol. Manag. 146 (2001), 199–209.
King, D.A., Allometry and life history of tropical trees. J. Trop. Ecol. 12 (1996), 25–44.
King, D.A., Allometry of Saplings and Understorey Trees of a Panamanian Forest. Funct. Ecol. 4 (1990), 27–31, 10.2307/2389648.
King, D.A., Wright, S.J., Connell, J.H., The contribution of interspecific variation in maximum tree height to tropical and temperate diversity. J. Trop. Ecol. 22 (2006), 11–24.
Loubota Panzou, G.J., Ligot, G., Gourlet-Fleury, S., Doucet, J.-L., Forni, E., Loumeto, J.-J., Fayolle, A., 2018. Architectural differences associated with functional traits among 45 coexisting tree species in Central Africa. Funct. Ecol. https://doi.org/10.1111/1365-2435.13198.
Manuri, S., Brack, C., Nugroho, N.P., Hergoualc'h, K., Novita, N., Dotzauer, H., Verchot, L., Putra, C.A.S., Widyasari, E., 2014. Tree biomass equations for tropical peat swamp forest ecosystems in Indonesia. For. Ecol. Manag. 334, 241–253.
Maréchaux, I., Chave, J., An individual-based forest model to jointly simulate carbon and tree diversity in Amazonia: description and applications. Ecol. Monogr. 87 (2017), 632–664.
Meunier, Q., Moumbogou, C., Doucet, J.-L., 2015. Les arbres utiles du Gabon. Presses agronomiques de Gembloux, Gembloux, Belgique.
Muller-Landau, H.C., Condit, R.S., Chave, J., Thomas, S.C., Bohlman, S.A., Bunyavejchewin, S., Davies, S., Foster, R., Gunatilleke, S., Gunatilleke, N., et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9 (2006), 575–588.
Ngomanda, A., Engone Obiang, N.L., Lebamba, J., Moundounga Mavouroulou, Q., Gomat, H., Mankou, G.S., Loumeto, J., Midoko Iponga, D., Kossi Ditsouga, F., Zinga Koumba, R., Site-specific versus pantropical allometric equations: Which option to estimate the biomass of a moist central African forest?. For. Ecol. Manag. 312 (2014), 1–9.
Niklas, K.J., A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories. New Phytol. 171 (2006), 27–40.
Paul, K.I., Roxburgh, S.H., Chave, J., England, J.R., Zerihun, A., Specht, A., Lewis, T., Bennett, L.T., Baker, T.G., Adams, M.A., Testing the generality of above-ground biomass allometry across plant functional types at the continent scale. Glob. Change Biol. 22 (2016), 2106–2124.
Pellegrini, A.F., Anderegg, W.R., Paine, C.T., Hoffmann, W.A., Kartzinel, T., Rabin, S.S., Sheil, D., Franco, A.C., Pacala, S.W., Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change. Ecol. Lett. 20 (2017), 307–316.
Picard, N., Saint-André, L., Henry, M., 2012. Manuel de construction d’équations allométriques pour l'estimation du volume et la biomasse des arbres: de la mesure de terrain à la prédiction. Organisation des Nations Unies pour l'alimentation et l'agriculture, et Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Rome, Montpellier.
Ploton, P., Barbier, N., Takoudjou Momo, S., Réjou-Méchain, M., Boyemba Bosela, F., Chuyong, G., Dauby, G., Droissart, V., Fayolle, A., Goodman, R.C., Henry, M., Kamdem, N.G., Mukirania, J.K., Kenfack, D., Libalah, M., Ngomanda, A., Rossi, V., Sonké, B., Texier, N., Thomas, D., Zebaze, D., Couteron, P., Berger, U., Pélissier, R., Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries. Biogeosciences 13 (2016), 1571–1585, 10.5194/bg-13-1571-2016.
Poorter, L., Bongers, L., Bongers, F., Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87 (2006), 1289–1301.
R Development Core Team, 2018. R: A language and environment for statistical computing. [WWW Document]. URL http://www.R-project.org.
Sheil, D., Salim, A., Chave, J., Vanclay, J., Hawthorne, W.D., Illumination–size relationships of 109 coexisting tropical forest tree species. J. Ecol. 94 (2006), 494–507.
Slik, J.W.F., Assessing tropical lowland forest disturbance using plant morphological and ecological attributes. For. Ecol. Manag. 205 (2005), 241–250.
Sprugel, D.G., Correcting for bias in log-transformed allometric equations. Ecology 64 (1983), 209–210.
Swaine, M.D., Whitmore, T.C., On the definition of ecological species groups in tropical rain forests. Plant Ecol. 75 (1988), 81–86.
Umunay, P.M., Gregoire, T.G., Ashton, M.S., Estimating biomass and carbon for Gilbertiodendron dewevrei (De Wild) Leonard, a dominant canopy tree of African tropical Rainforest: Implications for policies on carbon sequestration. For. Ecol. Manag. 404 (2017), 31–44.
Van Breugel, M., Ransijn, J., Craven, D., Bongers, F., Hall, J.S., 2011. Estimating carbon stock in secondary forests: Decisions and uncertainties associated with allometric biomass models. For. Ecol. Manag.
West, G.B., Brown, J.H., Enquist, B.J., A general model for the origin of allometric scaling laws in biology. Science 276 (1997), 122–126.
Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A., Wright, I.J., Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Evol. Syst. 33 (2002), 125–159.
White, F., 1983. The vegetation of Africa: A descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. ORSTOM - UNESCO, Paris, France.
Zianis, D., Mencuccini, M., On simplifying allometric analyses of forest biomass. For. Ecol. Manag. 187 (2004), 311–332, 10.1016/j.foreco.2003.07.007.
Zianis, D., Muukkonen, P., Mäkipää, R., Mencuccini, M., 2005. Biomass and stem volume equations for tree species in Europe, Silva Fennica Monographs. ed.
Zuur, A., Ieno, E.N., Walker, N., Saveliev, A.A., Smith, G.M., Mixed effects models and extensions in ecology with R. 2009, Springer Science & Business Media.