CMOS imagers; Clocks; Frequency converters; Integration; Photons; Timing circuits; Depth resolution; Differential nonlinearity; Non-uniformities; Photon-counting mode; State of the art; Time to amplitude converters; Time to digital converters; Timing performance; Optical radar
T. Fersch, R. Weigel, A. Koelpin, "A CDMA modulation technique for automotive time-of-flight LiDAR systems, " IEEE Sensors J., vol. 17, no. 11, pp. 3507-3516, Jun. 2017.
K. Yoshioka, et al., "A 20-ch TDC/ADC hybrid architecture LiDAR SoC for 240×96 pixel 200-m range imaging with smart accumulation technique and residue quantizing SAR ADC, " IEEE J. Solid-State Circuits, vol. 53, no. 11, pp. 3026-3038, Nov. 2018.
S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, A. Mouzakitis, "A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications, " IEEE Internet Things J., vol. 5, no. 2, pp. 829-846, Apr. 2018.
K. Pasquinelli, R. Lussana, S. Tisa, F. Villa, F. Zappa, "Singlephoton detectors modelling and selection criteria for high-background LiDAR, " IEEE Sensors J., vol. 20, no. 13, pp. 7021-7032, Jul. 2020.
J. Levinson, et al., "Towards fully autonomous driving: Systems and algorithms, " in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2011, pp. 163-168.
K. Kidono, T. Miyasaka, A. Watanabe, T. Naito, J. Miura, "Pedestrian recognition using high-definition LIDAR, " in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2011, pp. 405-410.
X. Zhao, P. Sun, Z. Xu, H. Min, H. Yu, "Fusion of 3D LIDAR and camera data for object detection in autonomous vehicle applications, " IEEE Sensors J., vol. 20, no. 9, pp. 4901-4913, May 2020.
C. Pulikkaseril and S. Lam, "Laser eyes for driverless cars: The road to automotive LIDAR, " in Proc. Opt. Fiber Commun. Conf. (OFC), 2019, pp. 1-4.
L. Lindner, et al., "Machine vision system errors for unmanned aerial vehicle navigation, " in Proc. IEEE 26th Int. Symp. Ind. Electron. (ISIE), Jun. 2017, pp. 1615-1620.
P. F. McManamon, LiDAR Technologies and Systems. Bellingham, WA, USA: SPIE, Jul. 2019.
C. L. Niclass, A. Rochas, P. A. Besse, E. Charbon, "A CMOS single photon avalanche diode array for 3D imaging, " in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2004, pp. 120-517.
C. Zhang, S. Lindner, I. M. Antolovic, J. M. Pavia, M. Wolf, E. Charbon, "A 30-frames/s, 252×144 SPAD flash LiDAR with 1728 dual-clock 48.8-ps TDCs, pixel-wise integrated histogramming, " IEEE J. Solid-State Circuits, vol. 54, no. 4, pp. 1137-1151, Apr. 2019.
M. Perenzoni, D. Perenzoni, D. Stoppa, "A 64×64-pixels digital silicon photomultiplier direct TOF sensor with 100-MPhotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6 km for spacecraft navigation and landing, " IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 151-160, Jan. 2017.
S. W. Hutchings, et al., "A reconfigurable 3-D-stacked SPAD imager with in-pixel histogramming for flash LIDAR or high-speed time-of-flight imaging, " IEEE J. Solid-State Circuits, vol. 54, no. 11, pp. 2947-2956, Nov. 2019.
F. Villa, et al., "CMOS imager with 1024 SPADs and TDCs for singlephoton timing and 3-D time-of-flight, " IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 6, pp. 364-373, Nov. 2014.
B. Markovic, S. Tisa, F. A. Villa, A. Tosi, F. Zappa, "A high-linearity, 17 ps precision time-to-digital converter based on a single-stage Vernier delay loop fine interpolation, " IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 3, pp. 557-569, Mar. 2013.
M. Crotti, I. Rech, M. Ghioni, "Four channel, 40 ps resolution, fully integrated time-to-amplitude converter for time-resolved photon counting, " IEEE J. Solid-State Circuits, vol. 47, no. 3, pp. 699-708, Mar. 2012.
D. Resnati, I. Rech, M. Ghioni, S. Cova, "Monolithic time-toamplitude converter for photon timing applications, " in Photon Counting Applications, Quantum Optics, Quantum Information Transfer and Processing II, I. Prochazka, R. Sobolewski, M. Dusek, Eds. Bellingham, WA, USA: SPIE, May 2009.
D. Stoppa, et al., "A 32×32-pixel array with in-pixel photon counting and arrival time measurement in the analog domain, " in Proc. ESSCIRC, Sep. 2009, pp. 204-207.
L. Parmesan, N. A. W. Dutton, N. J. Calder, A. J. Holmes, L. A. Grant, R. K. Henderson, "A 9.8 m sample and hold time to amplitude converter CMOS SPAD pixel, " in Proc. 44th Eur. Solid State Device Res. Conf. (ESSDERC), Sep. 2014, pp. 290-293.
D. Morrison, S. Kennedy, D. Delic, M. Yuce, J.-M. Redoute, "A triple integration timing scheme for SPAD time of flight imaging sensors in 130 nm CMOS, " in Proc. 25th IEEE Int. Conf. Electron., Circuits Syst. (ICECS), Dec. 2018, pp. 13-16.
D. Delic, "SPAD array structures and methods of operation, " WO Patent 20 17 004 663 A1, Jan. 12, 2017.
C. Yoo, "A CMOS buffer without short-circuit power consumption, " IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 47, no. 9, pp. 935-937, Sep. 2000.
D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, F. Zappa, "Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects, " IEEE Photon. Technol. Lett., vol. 25, no. 8, pp. 776-779, Apr. 15, 2013.
D. Morrison, D. Delic, M. R. Yuce, J.-M. Redoute, "Multistage linear feedback shift register counters with reduced decoding logic in 130-nm CMOS for large-scale array applications, " IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 1, pp. 103-115, Jan. 2019.
I. Takayanagi and J. Nakamura, "High-resolution CMOS video image sensors, " Proc. IEEE, vol. 101, no. 1, pp. 61-73, Jan. 2013.
S.-F. Yeh and C.-C. Hsieh, "Novel single-slope ADC design for full well capacity expansion of CMOS image sensor, " IEEE Sensors J., vol. 13, no. 3, pp. 1012-1017, Mar. 2013.
H. Park, C. Yu, H. Kim, Y. Roh, J. Burm, "Low power CMOS image sensors using two step single slope ADC with bandwidth-limited comparators & voltage range extended ramp generator for batterylimited application, " IEEE Sensors J., vol. 20, no. 6, pp. 2831-2838, Mar. 2020.
W. Uhring, C.-V. Zint, J. Bartringer, "A low-cost high-repetitionrate picosecond laser diode pulse generator, " in Semiconductor Lasers and Laser Dynamics, D. Lenstra, G. Morthier, T. Erneux, M. Pessa, Eds. Bellingham, WA, USA: SPIE, Sep. 2004.
D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, "SPAD figures of merit for photon-counting, photon-timing, imaging applications: A review, " IEEE Sensors J., vol. 16, no. 1, pp. 3-12, Jan. 2016.
S. Jahromi, J.-P. Jansson, P. Keranen, J. Kostamovaara, "A 32×128 SPAD-257 TDC receiver IC for pulsed TOF solid-state 3-D imaging, " IEEE J. Solid-State Circuits, vol. 55, no. 7, pp. 1960-1970, Jul. 2020.
C. Niclass, M. Gersbach, R. Henderson, L. Grant, E. Charbon, "A single photon avalanche diode implemented in 130-nm CMOS technology, " IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 4, pp. 863-869, Jul. 2007.
C. Niclass, M. Soga, H. Matsubara, S. Kato, M. Kagami, "A 100-m range 10-frame/s 340×96-pixel time-of-flight depth sensor in 0.18-m CMOS, " IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 559-572, Feb. 2013.
J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, E. Charbon, "A 1×400 backside-illuminated SPAD sensor with 49.7 ps resolution, 30 pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography, " IEEE J. Solid-State Circuits, vol. 50, no. 10, pp. 2406-2418, Oct. 2015.
A. R. Ximenes, P. Padmanabhan, M.-J. Lee, Y. Yamashita, D. N. Yaung, E. Charbon, "A 256×256 45/65 nm 3D-stacked SPAD-based direct TOF image sensor for LiDAR applications with optical polar modulation for up to 18.6 db interference suppression, " in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 96-98.