Severe Hypouricemia Impairs Endothelium-Dependent Vasodilatation and Reduces Blood Pressure in Healthy Young Men: A Randomized, Placebo-Controlled, and Crossover Study.
De Becker, Benjamin; Coremans, Catherine; Chaumont, Martinet al.
2019 • In Journal of the American Heart Association, 8 (23), p. 013130
[en] Background Uric acid (UA) is a plasmatic antioxidant that has possible effects on blood pressure. The effects of UA on endothelial function are unclear. We hypothesize that endothelial function is not impaired unless significant UA depletion is achieved through selective xanthine oxidase inhibition with febuxostat and recombinant uricase (rasburicase). Methods and Results Microvascular hyperemia, induced by iontophoresis of acetylcholine and sodium nitroprusside, and heating-induced local hyperemia after iontophoresis of saline and a specific nitric oxide synthase inhibitor were assessed by laser Doppler imaging. Blood pressure and renin-angiotensin system markers were measured, and arterial stiffness was assessed. CRP (C-reactive protein), allantoin, chlorotyrosine/tyrosine ratio, homocitrulline/lysine ratio, myeloperoxidase activity, malondialdehyde, and interleukin-8 were used to characterize inflammation and oxidative stress. Seventeen young healthy men were enrolled in a randomized, double-blind, placebo-controlled, 3-way crossover study. The 3 compared conditions were placebo, febuxostat alone, and febuxostat together with rasburicase. The allantoin (μmol/L)/UA (μmol/L) ratio differed between sessions (P<0.0001). During the febuxostat-rasburicase session, heating-induced hyperemia became altered in the presence of nitric oxide synthase inhibition; and systolic blood pressure, angiotensin II, and myeloperoxidase activity decreased (P≤0.03 versus febuxostat). The aldosterone concentration decreased in the febuxostat-rasburicase group (P=0.01). Malondialdehyde increased when UA concentration decreased (both P<0.01 for febuxostat and febuxostat-rasburicase versus placebo). Other parameters remained unchanged. Conclusions A large and short-term decrease in UA in humans alters heat-induced endothelium-dependent microvascular vasodilation, slightly reduces systolic blood pressure through renin-angiotensin system activity reduction, and markedly reduces myeloperoxidase activity when compared with moderate UA reduction. A moderate or severe hypouricemia leads to an increase in lipid peroxidation through loss of antioxidant capacity of plasma. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT03395977.
Disciplines :
Cardiovascular & respiratory systems
Author, co-author :
De Becker, Benjamin
Coremans, Catherine
Chaumont, Martin
Delporte, Cédric
Van Antwerpen, Pierre
Franck, Thierry ; Université de Liège - ULiège > Centre de l'oxygène : Recherche et développement (C.O.R.D.)
Rousseau, Alexandre
Zouaoui Boudjeltia, Karim
Cullus, Pierre
van de Borne, Philippe
Language :
English
Title :
Severe Hypouricemia Impairs Endothelium-Dependent Vasodilatation and Reduces Blood Pressure in Healthy Young Men: A Randomized, Placebo-Controlled, and Crossover Study.
Borghi C, Rosei EA, Bardin T, Dawson J, Dominiczak A, Kielstein JT, Manolis AJ, Perez-Ruiz F, Mancia G. Serum uric acid and the risk of cardiovascular and renal disease. J Hypertens. 2015;33:1729–1741.
Verdecchia P, Schillaci G, Reboldi G, Santeusanio F, Porcellati C, Brunetti P. Relation between serum uric acid and risk of cardiovascular disease in essential hypertension: the PIUMA study. Hypertension. 2000;36:1072–1078.
Kuo C-F, See L-C, Yu K-H, Chou I-J, Chiou M-J, Luo S-F. Significance of serum uric acid levels on the risk of all-cause and cardiovascular mortality. Rheumatology (Oxford). 2013;52:127–134.
De Becker B, Borghi C, Burnier M, van de Borne P. Uric acid and hypertension: a focused review and practical recommendations. J Hypertens. 2019;37:878–883.
Johnson RJ, Sautin YY, Oliver WJ, Roncal C, Mu W, Gabriela Sanchez-Lozada L, Rodriguez-Iturbe B, Nakagawa T, Benner SA. Lessons from comparative physiology: could uric acid represent a physiologic alarm signal gone awry in western society? J Comp Physiol B. 2009;179:67–76.
Grayson PC, Young Kim S, Lavalley M, Choi HK. Hyperuricemia and incident hypertension: a systematic review and meta-analysis. Arthritis Care Res. 2011;63:102–110.
Feig DI. Serum uric acid and the risk of hypertension and chronic kidney disease. Curr Opin Rheumatol. 2014;26:176–185.
Sugihara S, Hisatome I, Kuwabara M, Niwa K, Maharani N, Kato M, Ogino K, Hamada T, Ninomiya H, Higashi Y, Ichida K, Yamamoto K. Depletion of uric acid due to SLC22A12 (URAT1) loss-of-function mutation causes endothelial dysfunction in hypouricemia. Circ J. 2015;79:1125–1132.
Iso T, Kurabayashi M. Extremely low levels of serum uric acid are associated with endothelial dysfunction in humans. Circ J. 2015;79:978–980.
Radi R, Tan S, Prodanov E, Evans RA, Parks DA. Inhibition of xanthine oxidase by uric acid and its influence on superoxide radical production. Biochim Biophys Acta. 1992;1122:178–182.
Tan S, Radi R, Gaudier F, Evans RA, Rivera A, Kirk KA, Parks DA. Physiologic levels of uric acid inhibit xanthine oxidase in human plasma. Pediatr Res. 1993;34:303–307.
Becker BF, Reinholz N, Ozcelik T, Leipert B, Gerlach E. Uric-acid as radical scavenger and antioxidant in the heart. Pflugers Arch. 1989;415:127–135.
Becker BF. Towards the physiological function of uric acid. Free Radic Biol Med. 1993;14:615–631.
George J, Carr E, Davies J, Belch JJF, Struthers A. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation. 2006;114:2508–2516.
Waring WS, McKnight JA, Webb DJ, Maxwell SRJ. Lowering serum urate does not improve endothelial function in patients with type 2 diabetes. Diabetologia. 2007;50:2572–2579.
Waring WS, Mcknight JA, Webb DJ, Maxwell SRJ. Uric acid restores endothelial function in patients with type 1 diabetes and regular smokers. Diabetes. 2006;55:3127–3132.
George J, Struthers A. Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag. 2009;5:265–272.
Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840–844.
White WB, Saag KG, Becker MA, Borer JS, Gorelick PB, Whelton A, Hunt B, Castillo M, Gunawardhana L. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N Engl J Med. 2018;378:1200–1210.
Gaffo AL, Jacobs DR, Sijtsma F, Lewis CE, Mikuls TR, Saag KG. Serum urate association with hypertension in young adults: analysis from the Coronary Artery Risk Development in Young Adults cohort. Ann Rheum Dis. 2013;72:1321–1327.
Kamel B, Graham GG, Williams KM, Pile KD, Day RO. Clinical pharmacokinetics and pharmacodynamics of febuxostat. Clin Pharmacokinet. 2017;56:459–475.
Wauters A, Dreyfuss C, Pochet S, Hendrick P, Berkenboom G, Van De Borne P, Argacha JF. Acute exposure to diesel exhaust impairs nitric oxide-mediated endothelial vasomotor function by increasing endothelial oxidative stress. Hypertension. 2013;62:352–358.
Dreyfuss C, Wauters A, Adamopoulos D, Pochet S, Azarkan M, Berkenboom G, Van De Borne P, Argacha JF. L-NAME iontophoresis: a tool to assess NO-mediated vasoreactivity during thermal hyperemic vasodilation in humans. J Cardiovasc Pharmacol. 2013;61:361–368.
Kubli S, Waeber B, Dalle-Ave A, Feihl F. Reproducibility of laser Doppler imaging of skin blood flow as a tool to assess endothelial function. J Cardiovasc Pharmacol. 2000;36:640–648.
Johnson JM, Kellogg DL. Local thermal control of the human cutaneous circulation. J Appl Physiol. 2010;109:1229–1238.
Delporte C, Franck T, Noyon C, Dufour D, Rousseau A, Madhoun P, Desmet JM, Serteyn D, Raes M, Nortier J, Vanhaeverbeek M, Moguilevsky N, Nève J, Vanhamme L, Van Antwerpen P, Zouaoui Boudjeltia K. Simultaneous measurement of protein-bound 3-chlorotyrosine and homocitrulline by LC-MS/MS after hydrolysis assisted by microwave: application to the study of myeloperoxidase activity during hemodialysis. Talanta. 2012;99:603–609.
Franck T, Minguet G, Delporte C, Derochette S, Boudjeltia KZ, Van Antwerpen P, Gach O, Deby-dupont G, Mouithys-mickalad A, Serteyn D. An immunological method to combine the measurement of active and total myeloperoxidase on the same biological fluid and its application in finding inhibitors which interact directly with the enzyme. Free Radic Res. 2015;49:790–799.
Wang Z, Forceville X, Van Antwerpen P, Piagnerelli M, Ahishakiye D, Macours P, De Backer D, Neve J, Vincent J. A large-bolus injection, but not continuous infusion of sodium selenite improves outcome in peritonitis. Shock. 2009;32:140–146.
Brunt VE, Minson CT. KCa channels and epoxyeicosatrienoic acids: major contributors to thermal hyperaemia in human skin. J Physiol. 2012;590:3523–3534.
Adamopoulos D, Argacha J-F, Gujic M, Preumont N, Degaute J-P, van de Borne P. Acute effects of nicotine on arterial stiffness and wave reflection in healthy young non-smokers. Clin Exp Pharmacol Physiol. 2009;36:784–789.
Eiserich JP, Baldus S, Brennan M, Ma W, Zhang C, Tousson A, Castro L, Lusis AJ, Nauseef WM, White CR, Freeman BA. Myetoperoxidase, a leukocyte-derived vascular NO oxidase. Science. 2002;296:2391–2394.
Brunt VE, Fujii N, Minson CT. Endothelial-derived hyperpolarization contributes to acetylcholine-mediated vasodilation in human skin in a dose-dependent manner. J Appl Physiol. 2015;119:1015–1022.
Félétou M. The Endothelium Part 2: EDHF-Mediated Responses “The Classical Pathway.” San Rafael (CA): Morgan & Claypool Life Sciences Publishers Series INTEGRATED; 2011.
Edwards G, Félétou M, Weston AH. Endothelium-derived hyperpolarising factors and associated pathways: a synopsis. Pflugers Arch. 2010;459:863–879.
Deby C, Deby-Dupont G, Noël FX, Lavergne L. In vitro and in vivo arachidonic acid conversions into biologically active derivatives are enhanced by uric acid. Biochem Pharmacol. 1981;30:2243–2249.
El Ridi R, Tallima H. Physiological functions and pathogenic potential of uric acid: a review. J Adv Res. 2017;8:487–493.
Fleming I. The factor in EDHF: cytochrome P450 derived lipid mediators and vascular signaling. Vascul Pharmacol. 2016;86:31–40.
Uedono H, Tsuda A, Ishimura E, Nakatani S, Kurajoh M, Mori K, Uchiada J, Emoto M, Nakatani T, Inaba M. U-shaped relationship between serum uric acid levels and intrarenal hemodynamic parameters. Am J Physiol Ren Physiol. 2017;312:F992–F997.
Jia G, Durante W, Sowers JR. Endothelium-derived hyperpolarizing factors: a potential therapeutic target for vascular dysfunction in obesity and insulin resistance. Diabetes. 2016;65:2118–2120.
Oni-orisan A, Edin ML, Lee JA, Wells MA, Christensen ES, Vendrov KC, Lih FB, Tomer KB, Bai X, Taylor JM, Stouffer GA, Zeldin DC, Lee CR. Cytochrome P450-derived epoxyeicosatrienoic acids and coronary artery disease in humans: a targeted metabolomics study. J Lipid Res. 2016;57:109–119.
Ellinsworth DC, Sandow SL, Shukla N, Liu Y, Jeremy JY, Gutterman DD. Endothelium-derived hyperpolarization and coronary vasodilation: diverse and integrated roles of epoxyeicosatrienoic acids, hydrogen peroxide and gap junctions. Microcirculation. 2017;23:15–32.
Chen MF, Tsai JT, Chen LJ, Wu TP, Yang JJ, Te Yin L, Yang YL, Chiang TA, Lu HL, Wu MC. Antihypertensive action of allantoin in animals. Biomed Res Int. 2014;2014:690135.
Stamp LK, Turner R, Khalilova IS, Zhang M, Drake J, Forbes LV, Kettle AJ. Myeloperoxidase and oxidation of uric acid in gout: implications for the clinical consequences of hyperuricaemia. Rheumatology (Oxford). 2014;53:1958–1965.
Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA. 1981;78:6858–6862.
Nishida Y. Inhibition of lipid peroxidation by methylated analogues of uric acid. J Pharm Pharmacol. 1991;43:885–887.
Stinefelt B, Leonard SS, Blemings KP, Shi X, Klandorf H. Free radical scavenging, DNA protection, and inhibition of lipid peroxidation mediated by uric acid. Ann Clin Lab Sci. 2005;35:37–45.
Muraoka S, Miura T. Inhibition by uric acid of free radicals that damage biological molecules. Pharmacol Toxicol. 2003;93:284–289.
Amaro S, Soy D, Obach V, Cervera A, Planas AM, Chamorro A. A pilot study of dual treatment with recombinant tissue plasminogen activator and uric acid in acute ischemic stroke. Stroke. 2007;38:2173–2175.
Farquharson CAJ, Butler R, Hill A, Belch JJF, Struthers AD. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation. 2002;106:221–226.
Butler R, Morris AD, Belch JJF, Hill A, Struthers AD. Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension. 2000;35:746–751.
Desco M-C, Asensi M, Ma R, Pallardo FV, Sastre J. Xanthine oxidase is involved in free radical production in type 1 diabetes. Diabetes. 2001;51:1118–1124.
Sautin YY, Johnson RJ. Uric acid: the oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids. 2008;27:608–619.
Satou R, Penrose H, Navar LG. Inflammation as a regulator of the renin-angiotensin system and blood pressure. Curr Hypertens Rep. 2018;20:100.
Wu B, Hao Y, Shi J, Geng N, Li T, Chen Y, Sun Z, Zheng L, Li H, Li N, Zhang X, Sun Y. Association between xanthine dehydrogenase tag single nucleotide polymorphisms and essential hypertension. Mol Med Rep. 2015;12:5685–5690.
Kuroczycka-saniutycz E, Wasilewska A. Urinary angiotensinogen as a marker of intrarenal angiotensin II activity in adolescents with primary hypertension. Pediatr Nephrol. 2013;28:1113–1119.
Zhang J, Zhang Y, Deng W, Chen B. Elevated serum uric acid is associated with angiotensinogen in obese patients with untreated hypertension. J Clin Hypertens. 2014;16:569–574.