[en] The cobalt-mediated radical polymerization (CMRP) of new ionic liquid monomers (ILMs), vinyl imidazolium functionalized with redox-active free radical 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)VIm and its CMR copolymerization with vinyl imidazolium units functionalized with triethylene oxide (TEG)VIm produced a well-defined PILs (co)polymers. The controlled nature of (co)polymerization can be seen from the linear first-order kinetic plot, linear evolutions of the molar mass with total monomer conversion and the low polydispersity of the resulting (co)polymers. By combining the redox activity of (TEMPO)PVIm and remarkable ionic conductivity of (TEG)PVIm, outstanding rate capability performance was achieved with a remarkable capacity of 69 mAh g−1 at 60C. The obtained organic electrode can serve as sustainable electrodes in lithium ion batteries.
Research Center/Unit :
Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Belgium Center for Education and Research on Macromolecules (CERM), Belgium
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Aqil, Mohamed ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium > University Mohammed Premier, LCAE-URAC 18, Oujda, Morocco > Mohammed VI Polytechnic University, Materials Science and Nano-engineering, Hay Moulay Rachid, Ben Guerir, Morocco
Aqil, Abdelhafid ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Ouhib, Farid; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
El Idrissi, Abdelrahman; Univeristy Mohammed Premier, LCAE-URAC 18, Oujda, Morocco
Dahbi, Mouad; Mohammed VI Polytechnic University, Materials Science and Nano-engineering, Hay Moulay Rachid, Ben Guerir, Morocco
Detrembleur, Christophe ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Jérôme, Christine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Language :
English
Title :
Nitroxide TEMPO-containing PILs: kinetics study and electrochemical characterizations
Nakamura, K., Saiwaki, T., Fukao, K., Inoue, T., Viscoelastic Behavior of the Polymerized Ionic Liquid Poly(1-ethyl-3-vinylimidazolium bis(trifluoromethanesulfonylimide)). Macromolecules 44 (2011), 7719–7726, 10.1021/ma201611q.
Colliat-Dangus, G., Obadia, M.M., Vygodskii, Y.S., Serghei, A., Shaplov, A.S., Drockenmuller, E., Unconventional poly(ionic liquid)s combining motionless main chain 1,2,3-triazolium cations and high ionic conductivity. Polym. Chem. 6 (2015), 4299–4308, 10.1039/C5PY00526D.
Yin, K., Zhang, Z., Yang, L., Hirano, S.-I., An imidazolium-based polymerized ionic liquid via novel synthetic strategy as polymer electrolytes for lithium ion batteries. J. Power Sources 258 (2014), 150–154, 10.1016/j.jpowsour.2014.02.057.
Osada, I., De Vries, H., Scrosati, B., Passerini, S., Ionic-liquid-based polymer electrolytes for battery applications. Angew. Chemie - Int. Ed. 55 (2016), 500–513, 10.1002/anie.201504971.
Shaplov, A.S., Marcilla, R., Mecerreyes, D., Recent advances in innovative polymer electrolytes based on poly(ionic liquid)s. Electrochim. Acta 175 (2015), 18–34, 10.1016/J.ELECTACTA.2015.03.038.
Mecerreyes, D., Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog. Polym. Sci. 36 (2011), 1629–1648, 10.1016/j.progpolymsci.2011.05.007.
Yuan, J., Mecerreyes, D., Antonietti, M., Poly(ionic liquid)s: an update. Prog. Polym. Sci. 38 (2013), 1009–1036, 10.1016/j.progpolymsci.2013.04.002.
MacFarlane, D.R., Tachikawa, N., Forsyth, M., Pringle, J.M., Howlett, P.C., Elliott, G.D., Davis, J.H., Watanabe, M., Simon, P., Angell, C.A., Energy applications of ionic liquids. Energy Environ. Sci. 7 (2014), 232–250, 10.1039/C3EE42099J.
Tkacheva, A., Zhang, J., Sun, B., Zhou, D., Wang, G., McDonagh, A.M., TEMPO-ionic liquids as redox mediators and solvents for Li–O 2 batteries. J. Phys. Chem. C. 124 (2020), 5087–5092, 10.1021/acs.jpcc.0c00367.
Grygiel, K., Lee, J.S., Sakaushi, K., Antonietti, M., Yuan, J., Thiazolium poly(ionic liquid)s: synthesis and application as binder for lithium-ion batteries. ACS Macro Lett. 4 (2015), 1312–1316, 10.1021/acsmacrolett.5b00655.
Lee, J.H., Lee, J.S., Lee, J.W., Hong, S.M., Koo, C.M., Ion transport behavior in polymerized imidazolium ionic liquids incorporating flexible pendant groups. Eur. Polym. J. 49 (2013), 1017–1022, 10.1016/j.eurpolymj.2013.01.026.
Cordella, D., Kermagoret, A., Debuigne, A., Jéroîme, C., Mecerreyes, D., Isik, M., Taton, D., Detrembleur, C., All poly(ionic liquid)-based block copolymers by sequential controlled radical copolymerization of vinylimidazolium monomers. Macromolecules 48 (2015), 5230–5243, 10.1021/acs.macromol.5b01013.
Mori, H., Yahagi, M., Endo, T., RAFT polymerization of N -vinylimidazolium salts and synthesis of thermoresponsive ionic liquid block copolymers. Macromolecules 42 (2009), 8082–8092, 10.1021/ma901180j.
Zhang, B., Yan, X., Alcouffe, P., Charlot, A., Fleury, E., Bernard, J., Aqueous RAFT polymerization of imidazolium-type ionic liquid monomers: en route to poly(ionic liquid)-based nanoparticles through RAFT polymerization-induced self-assembly. ACS Macro Lett. 4 (2015), 1008–1011, 10.1021/acsmacrolett.5b00534.
Corrigan, N., Jung, K., Moad, G., Hawker, C.J., Matyjaszewski, K., Boyer, C., Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog. Polym. Sci., 111, 2020, 101311, 10.1016/j.progpolymsci.2020.101311.
Santha Kumar, A.R.S., Singha, N.K., Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization in ionic liquids: a sustainable process BT - advances in sustainable polymers: synthesis, fabrication and characterization. 2020, Springer Singapore, Singapore, 183–193.
Debuigne, A., Jérôme, C., Detrembleur, C., Organometallic-mediated radical polymerization of ‘less activated monomers’: fundamentals, challenges and opportunities. Polym. (United Kingdom) 115 (2017), 285–307, 10.1016/j.polymer.2017.01.008.
Detrembleur, C., Debuigne, A., Hurtgen, M., Christine, J., Pinaud, J., Coupillaud, P., Vignolle, J., Taton, D., Synthesis of 1-Vinyl-3-ethylimidazolium-based ionic liquid (Co) polymers by cobalt-mediated radical polymerization. Macromolecules, 2011, 6397–6404.
Aqil, M., Ouhib, F., Aqil, A., El Idrissi, A., Detrembleur, C., Jérôme, C., Polymer ionic liquid bearing radicals as an active material for organic batteries with ultrafast charge-discharge rate. Eur. Polym. J. 106 (2018), 242–248, 10.1016/J.EURPOLYMJ.2018.07.028.
Sato, K., Sukegawa, T., Oyaizu, K., Nishide, H., Synthesis of poly(TEMPO-substituted glycidyl ether) by utilizing t-BuOK/18-crown-6 for an organic cathode-active material. Macromol. Symp. 351 (2015), 90–96, 10.1002/masy.201300224.
Sukegawa, T., Sato, K., Oyaizu, K., Nishide, H., Efficient charge transport of a radical polyether/SWCNT composite electrode for an organic radical battery with high charge-storage density. RSC Adv. 5 (2015), 15448–15452, 10.1039/C4RA15949G.
Il, B., Chae, S., Koyano, M., Oyaizu, K., Nishide, H., Chae, I.S., Koyano, M., Oyaizu, K., Nishide, H., Self-doping inspired zwitterionic pendant design of radical polymers toward a rocking-chair-type organic cathode-active material. J. Mater. Chem. A., 1, 2013, 1326, 10.1039/c2ta00785a.
Chae, I.S., Koyano, M., Sukegawa, T., Oyaizu, K., Nishide, H., Redox equilibrium of a zwitterionic radical polymer in a non-aqueous electrolyte as a novel Li+ host material in a Li-ion battery. J. Mater. Chem. A., 1, 2013, 9608, 10.1039/c3ta12076g.
Tokue, H., Murata, T., Agatsuma, H., Nishide, H., Oyaizu, K., Charge–discharge with rocking-chair-type Li + Migration characteristics in a zwitterionic radical copolymer composed of TEMPO and trifluoromethanesulfonylimide with carbonate electrolytes for a high-rate Li-Ion battery. Macromolecules 50 (2017), 1950–1958, 10.1021/acs.macromol.6b02404.
Hong, J., Seung, J., Lee, J., Man, S., Min, C., Ion transport behavior in polymerized imidazolium ionic liquids incorporating flexible pendant groups. Eur. Polym. J. 49 (2013), 1017–1022, 10.1016/j.eurpolymj.2013.01.026.
K. Hatakeyama‐Sato, T. Tezuka, R. Ichinoi, S. Matsumono, K. Sadakuni, K. Oyaizu, Metal‐free, solid‐state, paperlike rechargeable batteries consisting of redox‐active polyethers, ChemSusChem. (2020) cssc.201903175. https://doi.org/10.1002/cssc.201903175.
Lee, M., Choi, U.H., Colby, R.H., Gibson, H.W., Ion conduction in imidazolium acrylate ionic liquids and their polymers. Chem. Mater. 22 (2010), 5814–5822, 10.1021/cm101407d.
Cordella, D., Kermagoret, A., Debuigne, A., Riva, R., German, I., Isik, M., Jérôme, C., Mecerreyes, D., Taton, D., Detrembleur, C., Direct route to well-defined poly(ionic liquid)s by controlled radical polymerization in water. ACS Macro Lett. 3 (2014), 1276–1280, 10.1021/mz500721r.
Debuigne, A., Michaux, C., Jérôme, C., Jérôme, R., Poli, R., Detrembleur, C., Cobalt-mediated radical polymerization of acrylonitrile: kinetics investigations and DFT calculations. Chem. – A Eur. J. 14 (2008), 7623–7637, 10.1002/chem.200800371.
Kim, I., Tsai, H., Nishi, K., Kasagami, T., Hammock, B.D., NIH public access. NIH Public Access. 50 (2008), 5217–5226, 10.1021/jm070705c.1.
Karimi, B., Mansouri, F., Vali, H., A highly water-dispersible/magnetically separable palladium catalyst based on a Fe3O4@SiO2 anchored TEG-imidazolium ionic liquid for the Suzuki-Miyaura coupling reaction in water. Green Chem., 16, 2014, 2587, 10.1039/c3gc42311e.
Behrends, F., Wagner, H., Studer, A., Niehaus, O., Eckert, H., Behrends, F., Wagner, H., Studer, A., Niehaus, O., Pöttgen, R., Eckert, H., Behrends, F., Wagner, H., Studer, A., Niehaus, O., Pöttgen, R., Eckert, H., Polynitroxides from alkoxyamine monomers: structural and kinetic investigations by solid state NMR. Macromolecules 46 (2013), 2553–2561, 10.1021/ma400351q.
Wang, F., Rong, M.Z., Zhang, M.Q., Reversibility of solid state radical reactions in thermally remendable polymers with C-ON bonds. J. Mater. Chem., 22, 2012, 13076, 10.1039/c2jm30578j.
Chen, J., He, J., Tao, Y., Li, C., Yang, Y., Synthesis of thermosensitive gel by living free radical polymerization mediated by an alkoxyamine inimer. Polymer (Guildf) 51 (2010), 4769–4775, 10.1016/j.polymer.2010.08.044.
A. Aqil, A. Vlad, M. Piedboeuf, M. Aqil, N. Job, S. Melinte, C. Detrembleur, J. Christine, A new design of organic radical batteries (ORBs): carbon nanotube buckypaper electrode functionalized by electrografting †, (2015) 9301–9304. https://doi.org/10.1039/c5cc02420j.
Aqil, M., Aqil, A., Ouhib, F., El Idrissi, A., Detrembleur, C., Jérôme, C., RAFT polymerization of an alkoxyamine bearing acrylate, towards a well-defined redox active polyacrylate. RSC Adv. 5 (2015), 85035–85038, 10.1039/C5RA16839B.
M. Aqil, A. Aqil, F. Ouahib, C. Detrembleur, C. Jerome, A. El Idrissi, A novel synthetic route toward a PTA as active materials for organic radical batteries, in: 2016 Int. Renew. Sustain. Energy Conf., IEEE, 2016: pp. 961–965. https://doi.org/10.1109/IRSEC.2016.7984033.
Cordella, D., Ouhib, F., Aqil, A., Defize, T., Jérôme, C., Serghei, A., Drockenmuller, E., Aissou, K., Taton, D., Detrembleur, C., Fluorinated poly(ionic liquid) diblock copolymers obtained by cobalt-mediated radical polymerization-induced self-assembly. ACS Macro Lett. 6 (2017), 121–126, 10.1021/acsmacrolett.6b00899.
Patil, N., Aqil, M., Aqil, A., Ouhib, F., Marcilla, R., Minoia, A., Lazzaroni, R., Jérôme, C., Detrembleur, C., Integration of redox-active catechol pendants into poly(ionic liquid) for the design of high-performance lithium-ion battery cathodes. Chem. Mater. 30 (2018), 5831–5835, 10.1021/acs.chemmater.8b02307.
Patil, N., Cordella, D., Debuigne, A., Admassie, S., Je, C., Detrembleur, C., Aqil, A., Debuigne, A., Admassie, S., Jérôme, C., Detrembleur, C., Surface- and redox-active multifunctional polyphenol-derived poly(ionic liquid)s: controlled synthesis and characterization. Macromolecules 49 (2016), 7676–7691, 10.1021/acs.macromol.6b01857.
Chen, X., Zhao, J., Zhang, J., Qiu, L., Xu, D., Zhang, H., Han, X., Sun, B., Fu, G., Zhang, Y., Yan, F., Bis-imidazolium based poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. J. Mater. Chem., 22, 2012, 18018, 10.1039/c2jm33273f.
Kalaga, K., Rodrigues, M.-T.F., Gullapalli, H., Babu, G., Arava, L.M.R., Ajayan, P.M., Quasi-solid electrolytes for high temperature lithium ion batteries. ACS Appl. Mater. Interfaces 7 (2015), 25777–25783, 10.1021/acsami.5b07636.
Bratton, A.F., Kim, S.-S., Ellison, C.J., Miller, K.M., Thermomechanical and conductive properties of thiol-ene poly(ionic liquid) networks containing backbone and pendant imidazolium groups. Ind. Eng. Chem. Res. 57 (2018), 16526–16536, 10.1021/acs.iecr.8b04720.
Paren, B.A., Raghunathan, R., Knudson, I.J., Freyer, J.L., Campos, L.M., Winey, K.I., Impact of building block structure on ion transport in cyclopropenium-based polymerized ionic liquids. Polym. Chem. 10 (2019), 2832–2839, 10.1039/C9PY00396G.
Smith, G.D., Borodin, O., Li, L., Kim, H., Liu, Q., Bara, J.E., Gin, D.L., Nobel, R., Miyashiro, H., A comparison of ether- and alkyl-derivatized imidazolium-based room-temperature ionic liquids: a molecular dynamics simulation study. Phys. Chem. Chem. Phys., 10, 2008, 6301, 10.1039/b808303g.
Triolo, A., Russina, O., Caminiti, R., Shirota, H., Lee, H.Y., Santos, C.S., Murthy, N.S., Castner, E.W. Jr, Umebayashi, Y., Seddon, K.R., Comparing intermediate range order for alkyl- vs. ether-substituted cations in ionic liquids. Chem. Commun., 48, 2012, 4959, 10.1039/c2cc31550e.
Bouchet, R., Maria, S., Meziane, R., Aboulaich, A., Lienafa, L., Bonnet, J.-P., Phan, T.N.T., Bertin, D., Gigmes, D., Devaux, D., Denoyel, R., Armand, M., Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12 (2013), 452–457, 10.1038/nmat3602.
Vlad, A., Singh, N., Rolland, J., Melinte, S., Ajayan, P.M., Gohy, J.-F., Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci. Rep., 4, 2015, 4315, 10.1038/srep04315.
Hernández, G., Işik, M., Mantione, D., Pendashteh, A., Navalpotro, P., Shanmukaraj, D., Marcilla, R., Mecerreyes, D., Redox-active poly(ionic liquid)s as active materials for energy storage applications. J. Mater. Chem. A 5 (2017), 16231–16240, 10.1039/C6TA10056B.