[en] Resonant ultrafast excitation of infrared-active phonons is a powerful technique with which to control the electronic properties of materials that leads to remarkable phenomena such as the light-induced enhancement of superconductivity1,2, switching of ferroelectric polarization3,4 and ultrafast insulator-to-metal transitions5. Here, we show that light-driven phonons can be utilized to coherently manipulate macroscopic magnetic states. Intense mid-infrared electric field pulses tuned to resonance with a phonon mode of the archetypical antiferromagnet DyFeO3 induce ultrafast and long-living changes of the fundamental exchange interaction between rare-earth orbitals and transition metal spins. Non-thermal lattice control of the magnetic exchange, which defines the stability of the macroscopic magnetic state, allows us to perform picosecond coherent switching between competing antiferromagnetic and weakly ferromagnetic spin orders. Our discovery emphasizes the potential of resonant phonon excitation for the manipulation of ferroic order on ultrafast timescales6.
Research Center/Unit :
QMAT, PhyTheMa
Disciplines :
Physics
Author, co-author :
Afanasiev, D.; Delft University of Technology > Kavli Institute of Nanoscience
Hortensius, J. R.; Delft University of Technology > Kavli Institute of Nanoscience
Ivanov, B. A.; National University of Science and Technology MISiS
Sasani, Alireza ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Bousquet, Eric ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Blanter, Y. M.; Delft University of Technology > Kavli Institute of Nanoscience
Mikhaylovskiy, R. V.; Lancaster University
Kimel, A. V.; Radboud University Nijmegen > Institute for Molecules and Materials
Caviglia, A. D.; Delft University of Technology > Kavli Institute of Nanoscience
Language :
English
Title :
Ultrafast control of magnetic interactions via light-driven phonons
Publication date :
2021
Journal title :
Nature Materials
ISSN :
1476-1122
eISSN :
1476-4660
Publisher :
Nature Publishing Group, United Kingdom
Volume :
20
Pages :
607
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercomputer CÉCI : Consortium des Équipements de Calcul Intensif
CÉCI supercomputer facilities (grant no. 2.5020.1) and Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (grant no. 1117545).
Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).
Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).
Mankowsky, R., von Hoegen, A., Först, M. & Cavalleri, A. Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 (2017).
Nova, T., Disa, A., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).
Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).
Kirilyuk, A., Kimel, A. V. & Rasing, Th. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).
Basov, D., Averitt, R. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).
Stupakiewicz, A., Szerenos, K., Afanasiev, D., Kirilyuk, A. & Kimel, A. Ultrafast nonthermal photo-magnetic recording in a transparent medium. Nature 542, 71–74 (2017).
Baierl, S. et al. Nonlinear spin control by terahertz-driven anisotropy fields. Nat. Photon. 10, 715–718 (2016).
Mikhaylovskiy, R. et al. Ultrafast optical modification of exchange interactions in iron oxides. Nat. Commun. 6, 8190 (2015).
Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).
Schlauderer, S. et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching. Nature 569, 383–387 (2019).
Först, M. et al. Melting of charge stripes in vibrationally driven La1.875Ba0.125CuO4: assessing the respective roles of electronic and lattice order in frustrated superconductors. Phys. Rev. Lett. 112, 157002 (2014).
Tobey, R., Prabhakaran, D., Boothroyd, A. & Cavalleri, A. Ultrafast electronic phase transition in La1/2Sr3/2MnO4 by coherent vibrational excitation: evidence for nonthermal melting of orbital order. Phys. Rev. Lett. 101, 197404 (2008).
Melnikov, A. et al. Coherent optical phonons and parametrically coupled magnons induced by femtosecond laser excitation of the Gd(0001) surface. Phys. Rev. Lett. 91, 227403 (2003).
Nova, T. F. et al. An effective magnetic field from optically driven phonons. Nat. Phys. 13, 132–136 (2017).
Maehrlein, S. F. et al. Dissecting spin–phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitation. Sci. Adv. 4, eaar5164 (2018).
Disa, A. S. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).
Zvezdin, A. & Matveev, V. Theory of the magnetic properties of dysprosium orthoferrite. Sov. Phys. JETP 50, 543–548 (1979).
Khim, T.-Y. et al. Strain control spin reorientation transition in DyFeO3/SrTiO3 epitaxial film. Appl. Phys. Lett. 99, 072501 (2011).
Fechner, M. et al. Magnetophononics: ultrafast spin control through the lattice. Phys. Rev. Mater. 2, 064401 (2018).
Juraschek, D. M., Narang, P. & Spaldin, N. A. Phono-magnetic analogs to opto-magnetic effects. Phys. Rev. Res. 2, 043035 (2020).
Hase, M., Kitajima, M., Nakashima, S.-i & Mizoguchi, K. Dynamics of coherent anharmonic phonons in bismuth using high density photoexcitation. Phys. Rev. Lett. 88, 067401 (2002).
Yamaguchi, K., Kurihara, T., Watanabe, H., Nakajima, M. & Suemoto, T. Dynamics of photoinduced change of magnetoanisotropy parameter in orthoferrites probed with terahertz excited coherent spin precession. Phys. Rev. B 92, 064404 (2015).
Kalashnikova, A. et al. Impulsive generation of coherent magnons by linearly polarized light in the easy-plane antiferromagnet FeBO3. Phys. Rev. Lett. 99, 167205 (2007).
Balbashov, A., Volkov, A., Lebedev, S., Mukhin, A. & Prokhorov, A. High-frequency magnetic properties of dysprosium orthoferrite. Zh. Eksp. Teor. Fiz. 88, 974–987 (1985).
Berton, A. & Sharon, B. Specific heat of DyFeO3 from 1.2°–80° K. J. Appl. Phys. 39, 1367–1368 (1968).
Subedi, A., Cavalleri, A. & Georges, A. Theory of nonlinear phononics for coherent light control of solids. Phys. Rev. B 89, 220301 (2014).
Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Sell, A., Leitenstorfer, A. & Huber, R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Opt. Lett. 33, 2767–2769 (2008).
Baltuška, A., Fuji, T. & Kobayashi, T. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. Phys. Rev. Lett. 88, 133901 (2002).
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). DOI: 10.1103/PhysRevB.50.17953
Gonze, X. et al. First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25, 478–492 (2002).
Gonze, X. et al. Recent developments in the ABINIT software package. Comput. Phys. Commun. 205, 106–131 (2016).
Torrent, M., Jollet, F., Bottin, F., Zérah, G. & Gonze, X. Implementation of the projector augmented-wave method in the ABINIT code: application to the study of iron under pressure. Comput. Mater. Sci. 42, 337–351 (2008).
Garrity, K. F., Bennett, J. W., Rabe, K. M. & Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446–452 (2014).
Topsakal, M. & Wentzcovitch, R. Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE = La–Lu). Comput. Mater. Sci. 95, 263–270 (2014).
Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
Liechtenstein, A., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott–Hubbard insulators. Phys. Rev. B 52, R5467 (1995).
Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).